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THE

MECHANTICS

or

LAPLACE

CHAP. I.

Ofthe equilibrium and of the composition of the forces
which act upon a material point.

1. A Booy appears to us to be in motion when it
changes its situation relative to a system of bodies
which we supposeto be atrest: but as all bodies, even
those which seem to be in a state of the most absolate
rest, may be in motion ; we conceive a space, bound-
less, immoveable, and penetrable to matter = it is to the
‘parts of this real or ideal space that we by i‘magination.
refer the situation of bodies ; and we conceive them to
be in motion when they answer successively to different
parts of space.

The nature of that singular modification in conse-
quence of which bodies are transported from one place
to another, is, and always will be unknown: we have
designated it by the name of force ; and we are not able:

®
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2 LAPLACE’S MECHANICS,

to determine any thing more than its effects, and the
laws of its action. The effect of a force acting upon a
material point is, if no obs‘t‘z;lplc opposes, to put it into
motion; the direction of the force is the right line which
it tends to make the point describe. It is evident that
if two forces act in t]}e‘A same, direction, their effectis the
sum of the two forces, and that if they act in a contrary
direction, the point is moved by a force represented by
their difference. If theirdirections form an angle with
cach other, a force results the directicn of which is a
mean between the directions, of the composing forces.
Let us sce what is this resultant and its direction.

For this purpose, let us consider two forces  and y
acling at the same time upon a material point I, and
forming a right angle with each other. Let z repre-
sent their resultant, and 8 the angle which it makes with
the direction of the force #; the two forces 2 and y
being given, the angle 6 will be determined, as well as
the resultant x ; in short therc exists amongét the three
quantities #, z, and 8 a relation which it is required
to know. _

Let us then suppose the forces « and y infinitely
small, and, equal to the differentials dz and dy ; let us
suppose, agam that # becoming successwely dz, 2dz,
3d,7c, &ec. y becomes dy, 2dy, 3dy, &c. ; it is evident
that the ano'le 6 will be always the same, and that the
rcsylta!;t.ﬁ,W}l.l.be,,cgmp, sucq.esswelx dz, 2z, 3dz, &c. ;
therefore in the successive increments of the three forces
@, y, and 3, the ratio of x to z will be constant, and
can be expressed by a function * of 8 which we will re-

* Evyery expression'in which any number of indeterminate-
quantities enter in any manner, isicalled’ a' function ' of'the
indeterminate: quantities.>” Thus' #%; a¥;a-+bx, sin,' w and:
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present by ¢ (8) ; we shall therefore have #==2 ¢ (8);
an equation in which # may be changed into 7, pro-
vided that at the same time w¢ change the angle 8 inte

g—-—g, # being the semi-circumference of a circle whose
radias is unity.

Moreover the force » may be considered as the re-
sultant of two forces 4" and ', of which the first 2/ is
dirccted along thé resultant z, and the second " pei-
petidicular toit. The force » which results from these
two new forces forming the angle 8 with the force a’

and the anglez-—— 8 with the force 27, we shall hni’q

| a? L T SR
:C':.r.@(g)_—_'—z-; w";x.@(é—G):—_-z— s
these two forces may be substituted for the force 2.
In like manner two new forces %' and »” may be sub-

! Lasae Vel e TORRT
stitated for y, the first being equal to‘%— and directed

along +; and the second equalto 2L and perpendicular

logarithm of (a-+bx) are called functions of x; and axty,
(x+y)3, sin. (ax4y) and log. (ax+4y*) are called func.
tions of x and y. One quantity is called an explicit function
of another quantity ot quantities, when we directly perceive
how it is formed from the other quantity or guantities.
Thus in the expressions y—ax*--br-c and y—azz-4-bax24-
cz? ; we have first y an explicit function of z, and next z an
explicit fanction of  and 2. - When we do net directly sce
how one quantity is fornied from others, but must find it hy
an algebraical process, we call that quantity an implicit
function of the others. Thas iu the first of the foregoing
equations, » is an implicit functien of ¥, and in the second,
an implicit function of y and a.
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to z; we shall therefore have, instead of the two forces
x and y, the four following :

Yyt owy ay

T 0% ’% '
the two last acting in contrary directions destroy each
other ; the two first acting in the same direction, when
added together form the resultant g ; we have therefore

2 yt=2";

from which it follows that the resultant of the two forces
z and y is represented in quantity by the diagonal of a
rectangle whose sides represent these forces.

Let us proceed to determine the angled. * If we in-
crease the force x by its differential dv, without altering
the force y, this angle will be diminished by the inde-
finitely small quantity 8, but it is possible to suppose
the force dz resolved into two, one d2* in the direction
of 3, and the other dz’ perpendicular to it ; the point
M will then be acted upon by the two forces s-dx’
and dz" which are perpendicular toeach other, and the
resultant of these two forces which we represent by 3/

will make with dz" the angle ;L—de ; we shall have
therefore by what precedes :
U—Y
d.l‘ —— .@(2 dg)

the function cp(g—dé) is consequently indefinitely

* That the reasoning in the proof of the direction of the
resulting force may be more readily comprehended, I have
given a diagram, (fig. 1.) in which we may suppose Mz
or b=z, Mb or zz or ac=y, Mr=—=z, za or zc=dz, z2'==
dx', 2c=dx'", Mc— resultant of z--dz’ and dz", angle 2M z
=0, and angle 2 Mc—~—d9.
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small, and of the form —/d5, k being a constant quantity

indcpendent of the angle 8 ; we have therefore

ol iiod Vol

Z’

« differing only by an indefinitely small quantity from

. =w
% ; moreover as dz” forms with dr the angle ;—¥9,

we have
del=—dz. (__e) 3"’”
therefore
="
.Z 3,

If we increase the force y by dy, supposing x constant ;
we shall have the corresponding variation of the angle

¢ by changing x into y, y into x, and 8 into %-——9, in

ad,
the preceding equation, which then gives dG—-—k yz 3 b

making z and y vary at the same time, the whole vari-

rdy — yd

ation of the angle 8 will be i

, and we shall have

ady — ydx

~2
~

—kdj.

By substituting for z* its value 2*--3® and* integrating

xdy — gd
zi4y?

may easily be found by substituting ux for y, and udr--adu
for dy, which gives
aude--2*dy — uxdr __ du
& 2fpia? g —+u?

therefore an arc whose tang.is u,is equal to k9--p, consequent.

—=kdf ;

ly u::g — tang., (k9+p). In the above itis hardly necessary

to observe, that.dx, dy, du, and df represent x, y, u, and9
the fluxions of &, y, u, and 0.

*
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we shall have %:tang. (k6-4p), p being a constant

quantity. This equation being combined with that of
2*fy*==2?, gives x—=z. cos. (kb--p)*

It is now only required to find the two constant quan-
tities £ and p ; but if we suppose y to vanish, then evi-
dently 2=z, and 6—0; therefore cos. ;—1,and 2=—:.
cos. k9. If we suppose x to vanish, then z=—y and
@—1x; cos. k9 being then cqual to nothing, % ought
to be equal to 2n--1, n being a whole number, and in
this case » will vanish whenever 6 shall be equal to
-2—7-;%-; but = being nothing, we have evidently 6—1r;
therefore 2n+1=1 or n—0, consequently

X==z. €OS. 0.

From which it follows, that the diagonal of the rect-
angle constructed upon the right lines which represent
the twoforces » and y, represents, not only the quantity,
butlikewise the direction of their resultant. Inlike man-
ner we are able for any force whatever to substitute two
other forces, which form the sides of arectangle having
ihat force for the diagonal; and from thence it is easy
to conclude, that it is possible to resolve a force into
three others which form the sides of a rectangular pa-
rallelepiped of which it is the diagonal *.

* For if MA (fig. 2.) represent any force, it may be
zesolved into two others, MB and MF, by means of the
rectangular parallelogram MBAF, also MF may in like
manner be resolved into the forces MG and ME, by form.
ing the rectangnlar parallelogram MGFE ; then if a paral-
felepiped be constructed having MEFG and MB for its
base and altitude, the force represented by its diagonal M4
will have been resolved into three other forces represented
in quantity and direction by its three edges MG, ME, and
MB. 'These three lines are called the co-ordinates of the
line M.A.



LAPLACE’S MECHANIGS. 7

Let therefore a, &, ¢ be the three rectangular co-
ordinates of the extremity of the right line, which re~
presenis any force whatever, of which the origin is that
of the co-ordinates; this force will be represented by
the function ¥/ a*-5°+-c*, and by resolving it parallel
to the axes of a, &, and c, the partial forces will be re-
spectively represented by these co-ordinates.

Let o, I’, ¢" be the co-ordinates of a second force;
atda', b0, e’ will be the co-ordinates of the re-
sultant of the two forces, and will represent the partial
ones into which it can be resolved parallel to three
axes; from which it is casy to conclude, that this re-
sultant is the diagonal of the parallelogram. constructed
upon the two.forces.

In general a,b, c; &, ¥/, c"; &c. being the co-or-
dinates of any number whatever of forces; a--a/-f-a”
&ec.; o440 &ce; otc'~-c" &c. will be the:-co-or-
dinates of their resultant ; the square of which will be the
sum of the squares of these last co-ordinates; we shall
therefore, by this means, have both the magnitude and:

“the position of the resultant.

2. From any point whatever of the: direction of a
force S, which point we shall take for the origin of this:
force, let us draw to the material point M a right linc
which we will call s ; Iet #, y, and = De the three rect-
angular co-ordinates, which determine the position of
the point M, and a, b, 2nd ¢ the co-ordinates of the
origin of the force ; we shall then bave *

s=V (z—a)’4(y—b )f+( g—c)".

* In (fig. 8.) let Av, Ay, and Az represent the three
rectangular co-ordinates of z, y, and 2z, and MS the line s;
from the points § and M let fall the perpendiculars S7 and
MN upon the plane y.4z, join m and N, draw.SRB. perpendi=
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If we resolve the force S parallel to the axes of z, of
Y and of = ; the corresponding partial forces will be by

; S —b I—
the preceding n°, S. 4 E a, S.4 ,and S. TC’ *

s

calar to MN, from m and N, in the plane yAr, draw the
perpendiculars mP and NT to Az, from m draw m@Q per-
pendicular to NT'; then because Sm and MN are perpen-
dicular to the same plane, they are parallel to each other;
also as m .V meets MN in the plane ydw, it is perpendicular
to it, and parallel and equal to SR, as is Sm to RN ; in
the rectangular figure PTQm we have PT—=mQ, and Pm=—=
TQ. In the figure SM—=s, Sm—=RN—¢, MN=—:, MR
—MN—NR—23—c¢, NT—=y, mP=TQ—=b, NQ=NT—
TQ=y—b, AT—=x, AP=a, PT=mQ—=A4T—AP—=1—a,
and as MRS is a right angled triangle MS—y/SR*4 MR*
but SR*=—=mN?*—, as the triangle mQN is right angled,
mQ*++QN>—=PT*+4QN?, therefore
MS=V P1'*+4+QN*+4MR>
or by substitution, s=V (2—a)*4(y—b)*+(z—c)?. If
S coincides with A, then a, b, and ¢ vanish, and
s=v x4yt 4-3%,

Let «, 3, and v respectively represent the angles which
s in this case makes with the axes of x, y, and =z, then it is
evident from fig. 2. in which we may suppose MA—s,
MG=—r, ME=y, and MB—z, that we have the following
proportion s : x : : rad. (1) : cos. «, consequently

cos. a=——; in like manner cos. B:‘%, and cos. y=; if
s

these cosines be substituted for their values in the equation
S:Vx1+yz+zz,
it will be changed into the following,

l_—_1/cos.’u+cos.“[3+cos.‘-y.

# By the preceding number s : 2—a : : 5 : 8: f%‘

or the force in the direction of the axis .
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s (12); 5 ()i () G,

and ( ) denoting, according to the received nota-

tion, the co-cflicients of the variations dv, 3y, and 3z,
in the variation of the preceding expression of s.

If, in like manner, we name s’ the distance of A7 from
any point in the dircction of another force §', that point

2 !
being taken for the origin of the force; §' (g—i) will

be this force resolved parallel to the axis of , and so
on of the rest ; the sum of the forces S, ¥, §, &c. re-

solved parallel to this axis will therefore be Z. S. g—i)

the characteristic = of finile integrals denoting here,

b}
the sum of the terms S. (3—;-;), 8 (:—;’), &ec.

Let V be the resultant of all the forces S, ¥, &e.,
and u the distance of the point A/ from a point in the

3
* The expressions (8 ) ( ) (3—‘—9) enclosed be.

tween parentheses, represent the co-efficients of the partial

differentiations of the equation
S:'1/(a:—a)’-—‘[—(y—b)’—{—(:—c)2

taken by making x, y, and = vary separately ; thus differ-

entiating the equation, by suppesing y a.nd,. constant, we

obtain ds— 2" (#r a)Sx tnerefore( )__ il a, inlike man.

o $
ner, a2

are ev1dently eqmvalent to the co-sines of the angles which
the line s makes with the co.ordinates x, y, and z respec-
tively.

() — .
and (3——):: 270 s these expressxous
4 s

B
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direction of this resultant, which is taken for its origin ;
du ’ G y
¥ (8—1;) will be the expression of this resultant re-

solved parallel to the axis of ' ; we shall therefore have

- du ds
by the preceding nurmber V. (ﬂ)zz S. (B_.r)

We shall have in like manner,

7. Giy)zz s. @5) . (iﬁ):z s.(3).

from which we may obtain, by multiplying these three
equations respectively by 3z, 3y, aud 3z, and then add-
ing them together,
V.u—=.8.3; . . . (a)

As this last equation has place, whatever may be the
variations 3z, 3y, and 3z, it is equivalent to the three
preceding ones.

If its second member is an exact variation of a func-
tion ¢, we shall have V. du==3¢, and consequently,

v.(9)=(2);

that is to say, the sum of all the forces S, ¥, &c. re-
solved parallel to the axis of x is equal to the partial

differential (;—Z) This case generally takes place

when these forces are respectively functions of the dist~
ance of their origin from the force M. 1In orderto have
the resultant of all these forces resolved parallel to any
right line whatever, we shall take the integral 2./.S3s,
and naming it ¢, we will consider it as a function of x,
and of two other right lines perpendicular to x and to

cach other; the partial differential (%2—’;) will then be
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the resultant of the forces S, §', &c. resolved parallel to
the right line x.*

* The following expressions of the equilibrium of a point
follow from the above equations. Suppose that the powers
are represented both in magnitude and direction by §, &,
S, &c. whose directions form the following angles,

withthe axisof x ., . . a, a, 2", . . .
with theaxisofy . . . B, 8. 6% . & .
with theaxisof 2 . . . ooy o . . ..
By resolving each of these forces into three others whose di-
rections are parallel to the axes, we shall have for the com.
posing forces parallel
tox . . &.cos.a, S cos. o, S cos. o &c. .
toy . . S.cos.B, S cos.g, 8" cos. g &c. .
tox . . S.cos.qy, S8 cos.qy 8" cos. v &c. .
Each of these three collections of forces is equivalent to a
single force, equal to their sum, because these components
are directed in'the same right line. Naming P, @, and R
the three forces respectively parallel to x, y, and 2, we shall
have
—S.cos.a+S".cos.a'+8".cos.a' '+ &c.
Q=" .cos.B+S".cos.p'4+S".cos.8"+&¢.
R—=S.cos.9+5".cos.¢/ 48" cos.o/'+&e.

Let @, b, and ¢ represent the unknown angles which the
direction of the resultant ¥V forms with the three axes ;
V. cos. a, V. cos. by V. cos ¢ will be its components in the
directions of the axes ; we shall have therefore V', cos. «—P,
V. cos. b==Q, and V. cos. c=R. If we add the squares of
these equations together, remembering that c0s.2a--cos,2H+4-
cos.*c—1, we shall obtain V2=P>+4Q*+R?, which gives
V=y/(P*4+-Q*+R?) ; the direction of the resultant may

be obtained from the equations Z
P Q R

€0s. a———-, €0Ss, b —_, €0S. ¢ ——..
: AR it Vv

These equations determine both the maguitude and the di-
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5. When the point I is in equilibrio by the action
of all the forces which solicit it, their resultant is no-
thing, and the equation (a) becomes

0==.8.3; (b)
which shews, that in the case of the equilibrium of a
point acted upon by any number whatever of forces,
the suin of the products of cach force by the element of
its direction is nothing.

If the point M is forced to be upon a eurved surface,
it will experience a re-action which we shall denote by
R. This re-aétion is equal and direetly contrary to the
pressure with which the point presses upon the surface;
for by supposing it acted upon by two forces, R and
—R, it is possible to conceive, that the force —R is
destroyed by the re-action of the sutface, and that the
point M presses upon the surface with the force —R ;
but the force of pressure of a point upon a surface is
perpendicular to it, otherwise it would be possible to
tesolve the force into two, one perpendicular to the sur-
face, which would be destroyed by it, the other pa-
rallel to the surface, in consequence of which the point
would have no action upon it, which is confrary to the

rection of the resultant ¥, which is evidently the diagonal
of the parallelepiped constructed upon P, Q, and R. If
the system be in equilibrio, it is manifest that each collection
of forces parallel'to the axes should likewise be fa equilibrio,
which gives

P=0, @Q=0, R=0.

With respect to the signs of the components . cos. =,
8, cos. o'y &c., it may be observed that those which tend
to increase the co-ordinates should be reckoned positive,
and those which act in a contrary direction negative.
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supposition ; naming *r thereforc the perpendiculax
drawn from the point 27 at the sarface, and terminated
in any point whatever of its direction, the force R will
be directed along this perpendicular; it will be reces-
sary therefore to add R.3r to the seccond member of the
equation ('b) which will become
0==. 8. 3s}-R.3r; (t)
— R being then the resultant of all the forces S, &, &e-
it is perpendicular to the surface,

If we suppose that the arbitrary variations 3z, 3y,
and 9z appertain to the curve surface upon which the
point is forced to remain, we shall have, by the nature
of the perpendicular to this sutface, r==0, which makes
R. 3r vanish from the preceding eqnation : the equa-
tion () Las place therefore in this case, provided that
we extract one of the three variations 3z, 3y, and 3z, by
means of the equation to the surface; but then the
equation (5) which in the gencral case is equivalent to
three, is not equivalent to more than two distinct equa-
tions, which we may obtain by equalling separately to
nothing the co-efficieats of the two remaining differ-
entials. + Let #==0 be the cguation of the surface,

* Ia (fig. 4.) let a point be in equilibrio at 3, on the
curve 4MB, by means of the forces MP, }MQ, and the re-
action of the curve ; then if MR, supposed perpendicular to
the curve at M, be the resultant of the forces MP, and MQ,
it will represent the pressure of the point upon the carve,
aod if RM be produced tor, and Mr—MR, then Mr will
represent the re-action of the curve upon the point, which
may be supposed in equilibrio in consequence of the forces
MP, MQ, and Mr. : .

+ The nature of a surface may be determined by three rest-
angular co.ordinates, as that of a line may by two; thus et
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the two equations 37—0 and 5u=0 will have place at
the same time, this requires that 3r should be equal to
Nsu, N being a function of z, y, and z. Naming q,

#—0 be an equation to a surface, and let its co-ordinates z,
¥, and z be respectively measured upon the lines AX, AY,
and AT (fig. 5.); if the values of x and y are given and
represented by @ and b, by taking on the axes of x and y
AP—a, AQ==b, and drawing the parallels QM', PM to
these axes, the point M', which is the projection of the point
M of the surface upon the plane of z, y, will be determined ;
the equation by substitution will then give the corresponding
value of z, which determines the length of the co-ordinate
MM, and, consequently the point M of the surface.

Curves of double curvature are forimed by the intersection
of two surfaces. Thus, let the equations to two surfaces be
represented by F(, y, 2)=0, and f(x, y, 2)=0, then the
curve of double curvature formed by their intersection will
have the same co-ordinates; if therefore the variable « be
extracted by means of these equations, the resulting one will
represent the projection of the curve of double curvature
upon the plane of yx; in like manuer, if y had been ex.
tracted, the resulting one would have been that of the pro-
jection upon the plane of xz; and if z had, that of the pro-
jection upon the plane of zy., The resulting equations
likewise represent cylindrical surfaces elevated upon these
projections respectively perpendicular to the planes of the
co-ordinates, and the curve of double curvature will be the
intersection of any two of these surfaces.

Those who are desirous of being acquainted with the pro-
perties of surfaces, or of curves of double curvature, or of
lines supposed in space, and considered with reference to.
their projections upon three planes at right angles to each
other, may counsult the Traite’ du Calcul Differentiel et
Integral par S. F. Lacroix, the Application de I’Algebre ala
Geometrie par MM, Mange et Hachette, &c.
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b, and ¢ the co-ordinates of the origin of r, we shall
have to determine it

r=V (2—a)*+(y—b)*+(x—c)" ;

from which we may obtain
y 31‘) (3 r)’ (8 r)'___l e iy
G ) =1 and consequently

¥ 3G+ +HE) §=

by making therefore

R

p 5
Ju)\? Ju)? Ju\*
v () +G)+GD)
the term R. 3r of the equation ('¢) will be changed into
Adu, and this equation will become
0==2. 8. ¥s4-2r. du ;
in which we ought to equal separately to nothing the
co-efficients of the variations 3,3y, and 3z, which gives
three equations ; but they are only equivalent to two
between z, y, and 3, on account of the indeterminate
quantity » which ihey contain. We may therefore
instead of extracting from the equation () one of the
variations 3z, 3y, or 3z, by mecans of the differential
equation o the surface, add to it this equation multi-
plied by an indeterminate quantity A, and then con-
sider the variations 3z, 3y, and 3z as independant quanti-
ties. This method, which likewise results from the theory
of elimination, unites to the advantage of simplifying
the calculation, that of making known the pressure
— R with which the point M acts against the surface*.

PROm_.

* Let the point be supposed in equilibrio upon a surface
whose equation is =0, and let the forces S, §', S, &c. be
reduced to three P, @, and R acting in the directions of the
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Supposing this peint o he contained in a canal.of
simple or double curvature, it will prove cn the part

three rectangular co-ordinates ; then the sum ofthe maments

P.3r4-Q.3y4-R.3x will be equivalent to S3y-4S'8s'S"8s"

~&c. and by adding 3z multiplied by the indeterminate

guantity a, the equation of equilibrinm becomes
P.3c+4+Q.3y+R.3x4-23u—0 ;

but % being a known function of x, y, and =, we shall have

by differentiation

o= (P o o)

Sjue Su 4 3
3._3?), 3_3/)’ and (ﬁ—z) representing the co-eflicients of
3z, 8y, and 3z. By substituting this value of du in the pre.
ceding eqnation, it becomes

P.sx+Q.sy+R.sz+x(§%)sx+a(;_}j)3y+a(§_’;)az:o

which gives, by equalling separately to nothing each sum of
the terms mnltiplied respectively by oz, 3y, and 3z, the three
folloewing equations

1’+A.(3_“):o,
Q-+, Su)__o’
R 3”):0

from which, by extracting A, we shall obtain the two follow-

ing equatiouns
(a “) — P. (M):O,
Rfanldaa)n:

that contain the conditions of the equilibrivm of a peint
upon a surface,
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of the canal, a re-action which we shall denote by %,
that will be equal and direcily contrary to the pressure
with which the point acts against the canal, the direc-
tion of which will be perpendicular to its side; but the
curve formed by this canal is the intersection of two

In the case of a point acted wpon by certain forces, the
conditions of its equilibrium upon a surface may be found
with more ease, by directly substituting in the equation

P .3x4-Q.0y+R.32—0,
the value of 3z obtained from the differential equation

) (G (s

of the surface, and then equalling separately to nothing the
co-efficients of the differentials 3z and 3y, By this method
we shall immediately get the eguatious

du

)
TIO,

s—~)

Q—R. )—0

)

which are equivalent to the equations found by the other
method.

Iu like manner, if 2 body is forced fo be upon a line of a
given description, determined by the two differential equa-
tions Sy—pdr, d3—=¢dx of the projections of the line upon the
planes of zy and 2z, we have only to substitute these values
of 3y and 3z, in the equation P.3x4Q.3y4-R.32==0, which,
on being divided by 3r, gives the equation,

P.4-Q.p+R.¢—=0,

for the condition of equilibrium.

P—R,

b
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surfaces, of which the equations expressits nature ; we
may thevefore consider the force k as the resultant
of the two forces R and ', which re-act upon the
point M from the two surfaces; morcover as the di-
rections of the three forces R, R/, and k are perpendi-
cular to the side of the cuarve, they arc in the same
plane. By naming therefore dr and 3 the elements of
the directions of the forces R and I/, which directions
are respectively perpendicular fo each surface, it will
be necessary to add to the equation (4) the iwo terms
R.3r and R'.3r which will change it into the following
0==2.8.3sR.Or4-R'.3r". (d)

If we determine the variations 3x, 3y, and 3z so that
they may appertain at the same {ime to two surfaces,
and, consequently, to the curve formed by the canal ;
3r and 3r' will vanish, and the preceding equation will
be reduced to the equation (%), which therefore has
place again in the case where the point M is forced to
move in a canal ; provided, that by means of the two
equations which express the nature of the canal, we
make two of the variations 3z, 3y, and 3z to disappear.

Letus suppose that #—20 and «’==0 arc the equations
of the two surfaces, whose intersection forms the canal.
If we make

R
== ’ ‘ ;
v (52)+G) +6)
R
s
v (@) () +G)

the equation (d) will become
0==3. S.ds-}noe-f-2/0u ;

and
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an equation in which the co-efficients of each of ihe
variations 3, 3y, and 33 will be separately equal to no-
thing ; in this manner three egnations will'be obtained,
by means of which the values of » and 2’ may be deter-
mined, which will give the re-actions R and 2 of the
two surfaces; and by composing them we shall have
the re-action % of the canal upon the poist A7, and,
consequently, the pressure with which this point acts
acainst the canal. 'This re-action, resolved parallel to
the axis of x is equal to '

B Y du eI
. (S‘—})-*—R, 3_;;), or to A, g_.—x‘)+7\ 3-;),

the equations of condition =0, and «’==0, to which
the motion of the point M is subjected, express, there-
fore, by means of the partial differentials of functions,
which are equal to nothing because of these equations,
the resistances which act upon this point in consequence
of the conditions of its motion.

It appears from what precedes, that the equation (5)
of equilibrium has generally place, provided, that the
variations 3, 3y, and 3z are subjected to the conditions
of equilibrium, This equation may therefore be made
the foundation of the following principle.

If an indefinitely small variation is made in the posi-
tion of the point M, so that it still remains upon the
surface, or the curye dlong which it would move if it
were not entirely free ; the sum of the forces which.so~
licit it, each multiplied by the space which the point
moved in its direction, is equal to nothing in the case
of equilibrium *,

* Let the forces §, §', §", &c. be supposed to act npon
the point M in the directions of the lines 5, &, &', &c, re.

4



20 LAPLACE’S MECHANICS,

The variations 3z, 3y, and 3z being supposed arbi-
trary and independent, it is possible in the equation

*

spectively drawn frow that point to the origins of these
forces; let V represent their resuliant, and u a line drawn
from the point M io iis direction ; also, let any line M N,
be supposed to be drawn from the point M, and each of whe
forces ¥, 8, &', &c. to be resolved into two others, one in
the direction of this line, and the other perpendicular to it,
Because V is the resultant of all the other forces, its compo-
nent along the line MN wiil be equal to the sum of the com-
ponents of the other forces along the same line ; let m, «,
d, d', &c. denote the angles which the directions of the
forces ¥, S, 8', 8", &c. respectively make with the line
MN, we shall then have the following equation,
V.cos.m=—>S.cos.a+}+S".cos.a'+8".cos.a", 4 &c.
Y.et auy point ¥V be taken upon the line MN, then if this
line be represented by b, and its respective projections upon
the lines m, s, s’y s, &c, or their continuations by Aw,
Asy as'y A", &c. we shall have
Auz—b.cos.m, As—b.cos.a, As'=—b.cos.a', &c,
If both sides of the preceding equation are multiplied by 2,
it will, by substitution, become
V.au—=S.as48./05'48". as"}-&c.
If the point M be supposed to move to the point N, and the
line MN be regarded as representing the virtual velocity of
this point, the quantities Az, As, As’, &c. will denote the
virtual velocities of this point in the directions of the forces
V.S,8, 8" &c.; the last equation therefore shews, that the
product of the resultant of any number of forces applied to
-the same pbint, by the virtual velccity of this point estimated
in its direction, 1s equal to the sum of the products of these
forces by their respective virtual velocities, estimated iu the
* directions of the forces. It is not absolutely necessary that
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(a) to substitute for the co-ordinates 2, y and % three
other quantities which are functions of them, and to
equal the variations of these quantities to nothiang.

Thus naming p the radius drawn from the origin of
the co-ordinates to the projection of the point M upon
the plane of @ and y, and @ the angle formed by p and
the axis of x, we shall have

X==p.COS. ®;  y=p.sin, w.

By considering therefore in the equation (a), %, s, §/,
&c. as functions of p, =, and g, and comparing the co-
efficients of 3z, we shall have

V.( %):2' 5(;5) S hcH

Vs . _ .
.—(b‘_lf) is the expression of the force V resolved in
P @

the direction of the element p.0w.  Let V7 be this force
resolved parallel to the plane of z and y, and p the per-
pendicular let fall from the axis of z, upon the direction

the virtual velocities should be supposed indefinitely small,
if they are, the last equation becomes
V.3u—=_8.3s+8".0s'4-8".3s"4+&e.
In the case of eqnilibrium, we have /=0, and consequently
0=S.3s48'.3s'+8"0s", &e.

If the point is forced to remain upon a given curve or surw
face, this equation will be proper, the virtual velocities Js,
ds', 3", &c. being supposed indefinitely small, and 3u—0 in.
stead of V.

The products §.3s, §'.5s'y §".3s"; &c. are ecalled by some
authors the moments of the powers S, 8, 5", &c. ; and their
sum being equal to nothing, which has place not only for one
point, but, as will be proved hereafter, for any system what.
ever in equilibrio, is called the principle of virtual ve-
locities.
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,
of 77 parallel to the same planc; p_:_' will be a second

expression of the force V' resolved in the direction of
the element pdw *; we shall therefore have

pV’::V.(i—Z).

If we suppose the force V’ to be applied to the extremity
of the perpendicular p, it will tend to make itturn about
the axis of z ; the product of this force by the perpen-
dicular is what is called the moment of the force ¥ with
respect to the axis of z ; this moment is therefore equal

to V,(gg); and it appears from the equation (e),

that the moment of the resuliant of any number what-
ever of forces is equal to the sum of the moments of
these forces

* Let MB (fig. 6.) represent /"', or the force ¥ resolved
along a plane parallel to that of zy, let O be the point where
this plane cuts the axis of 2, join OM, then OM will be pa-
rallel and equal to p, draw O4 or p perpendicular to ¥’ or
MB produced, also BD perpendicunlar to OM; then, as the
right angled triangles MBD), MQO.A have a common angle at
M, they are similar, consequently

pr,

MOG) : 0d(p) + : MB(P) : DB=L;

but the line DB represents the force /7 resolved in the di-

rection pdz perpendicular to p, therefore that force is repre-

!
seunted by EK.
?
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CHAP. 1L

|

Ofthe molion of a material point.

4. A Pornt at rest is not able to give itself any mo-
tion, because it does not contain within itself any cause
why it should move in onedirection rather than another.
‘When it is solicited by any force whatever, and after-
wards left to itself, it will move constantly in an uniform
manner in the direction of that force, if not opposed by
any resistance. This tendency of matter to persevere
in its state of motion or rest, is called its inertia, This
is the first law of the motion of bodies.

That the direction of the motion is a right line fol-
lows evidently from this, that therc is not any reason
why the point should change its course more to one
side than the other of its first direction: but the cause
of the uniformity of its motion is not so evident. The
nature of the moving force being unknown, it is impos-
sible to discover a priori if it ought to continue with-
out ceasing. In fact, as a body is incapable of giving
itself any motion, it appearts equally incapable of alter-
ing that which it has received ; so that the law of
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inertia is the most simple and natural which it is pos-
sible to imagine ; it is also confirmed by cxpcfience,
for we observe upon the earth that the more the ob-
stacles are diminished, which oppose the motions of
bodies, the longer these motions are continued ; which
leads us to believe, that if the obstacles were removed
they would never cease, But the inertia of matter is
most remarkable in the niotions of the celestial bodies,
~which have not during a great number of ages experi-
enced any perceptiblealteration. Thus we may regard
the inertia of bodies as a law of nature, and when we
shall observe any alteration in the motion ofa body, we
will suppose that it is owing to the action of a different
cause.

In uniform motion the spaces gone over are in pro-
portion to the times, but the timic employed in describ-
ing a given space, is longer or shorter according to the
magnitude of the moving force. These differences have
given rise to the notion of velocity, which, in uniform
motion, is the ratio of the space to the time passed in
going over it: thus, s reprcsénting the space, ¢ the

: ; s .
time, and » the velocity, we have =7 Time and

space being heterogeneal, and consequently, not com-
parable quantities, a determinate interval of time is
chosen, such asa second for an unit of time; in like
manner, some unit of space is chosen, as a metre; and
then space and time become abstract numbers, which
express how often they contain the units of their species,
that are thus rendered comparable to cach other. By
this means the velocity becomes the ratio of two ab-
stract numbers, and its unity is the velocity of a body
which passes over the space of a metre in one second.
5. The force being only known by the space which
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it causes a body fo describe in a given time, it is natural
to take this space for its measure ; but this supposes that
many forces acting in the same direction, should cause
the bedy to pass over a space cqual to the sum of the
spaces which cach of them would bave made it go
over separately ; or what comes to the same, that the
force is proportional to the velocity. This is what we
are not able to know a priori, owing to our ignorance
of the nature of the moving force; it is therefore ne-
cessary to have again recourse to experience on this
occasion, for all that which is not a necessary conse-
quence of the little which we know respecting the na-
ture of things, must be to us but a result of observation*,

#* Mr. Knight, in the ninth No. of the Mathematical Re-
pository, has attempted to prove the law of the proportion.
ality of the force to the velocity, by supposing two straight
lines at right angles to each other, to represent the magni.
tudes and the directions of two forces, and taking parts from
these lines, measured from their junction, to represent the
velocities which these forces would respectively cause ; and
by completing two parallelograms, one about the lines de.
noting the forces, and the other about those denoting the
velocities, and drawing diagonals in each of them represent.
ing the respective resultants of the forces and the velocities 3
he has shewn that if the diagonals are in the same right line,
the parallelograms will be similar, and consequently the
forces and the respective vglocities proportional ; if they
are not, it must be supposed that the resultant of the forces
has caused a motion in a different direction to its own, which
is absurd.

Mr. Knight has, T think, proved that the force varies as
the velocity, if it be taken for granted, that the proofs re.

B
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Nammwv the velocnty of the earth, which is common
to all the bodies upon its surf'cc, let f be the force by
which oneof these bodies M is actuated in consequence
of this velomty, and let us suppose thatv—fo (f) isthe
relation which exists between the velocity and the force;
@ (f) being a function of f which it is necessary to de-
termine by ex_porm'ent Let @, b, and ¢ be the three
partial forces into which the force f may be resolved
parallel to three axes which are perpendicular to each
other. Let us then supposc the moving body A7 to be
solicited by anew force £/, which may be resolved into
three others a, U’y and ¢’ parallel to the same axes.
The forces by which this body will be actuated in the
directions of these axes, are a--a', b4V, and c-f-c';
naming I the sole resuliing force, it will become, from
what precedes,

F=V/ (atd' )"+ b0 )" F (et ).

If the velocity corresponding to I be named U

(a4-d).U *
F

wi']l'r'epréseflt this velacity resolved pa-

specting the composition and the resolution of forces, and
those respecting the composition and the resolution of velo.
cities, are satisfactorily demonstrated independent of each
other

% If U represents the velocity ofthe body correcpondmg
to F we shall find that part of it relative to the axis of a-+d'
by the proportion

vV (atd)? +(0+”) et ) atdiin U s

(a+d)U
Vatd F (o) (e

but F=v(a+d)*+(0+0)*+(c+c)?, thercfore, " by
(atd)U

r

=ubsmuhon "the expression becomes ~——-
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rallel to the axis of a ; also the rclahve vclocity of the
body upon the earth lnmllel to this axis will be
7

(“+1%‘_)__U_f‘ff’ or (ata’).¢ (I)—a. ¢ (f). The
greatest forces which we are able to impress upon bodies
at the surface of the earth, being much smaller than
those by which they are actuated in consequence of the
motion of the carth, we may consider @', I/, and ¢/ as
mdeﬁmtcl) small quantitics relative to f: we shall

ad 4-bb' t-cd *
therefore haye I:f—{————————————- ; and

* 1If o/, B/, aud ¢ are supposed indefinitely small relative
to f, thPI!' squares aund products may be’ neglected : "the ex.

pression V(a-]—a) +¢b40')24(c+¢)* will then become
vV @i b i -2ud +200'42¢c 5 let a?4-bid-c*—=f* and
Qaa’+2bb’+‘_>cc’:y, then if the expression t/fz-}-y is ex.

panded by the binomial theorem, it will become j+_.f
ad 4bb' 4-cc .

—r—— &c. but as all the terms after the

&c. or f4+

two first of the series contain the squares, products, or
higher powers of @, &', and c, they may be neglected.
If in the expression ¢ (x) we substitute x4k for x, it bea
2,
d@(r) . ete) dio(x) o d*p(x)

o IHEY e 3

comes(x—4-k;=¢< x)-{- ol Ta, 3de

5 j(:__; 4']e~f.+‘&c which gnes, xf cp(x) be represented
T2 d3u
== h N k3
y“"p(”+) "+ v +12 WY i

this is called the theorem of Taylor, and is proved a yariety
of ways in different mathematical works. Iff be substxtuted
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@(F)—qz(f)+a——~——-—a+bb s ¢'(f) being the

differential of ¢(f) dlvnded by df. The relative velo-
city of M in the direction of the axis of a, will, in like
manner, become

a'.¢(f)-|—}'.{aa'+bb'+ccf}. oCf).

Its relative velocities in the directions of the axes & and
¢ will be

b’.(p(f)—{—;.{aa’—{—bb’—}—cc’}. e)s
cl.q>(f)-}-}.{aa'+bb'+ccf}. of).

The position of theaxes a, b, and ¢ being arbitrary, we
may take the direction of the impressed force for the
axis of a, and then &’ and ¢’ will vanish ; and the pre-
ceding relative velocities will be changed into the fol-
lowing,

%@(f)+— '(f)} L f)s L.

If ¢’(f) does not vanish, tbe moving bod y in conse-
quence of the impressed force &/, will have a relative
velocity perpendicular to the direction of this force,
provided that & and ¢ do not vanish ; that is to say,
provided that the direction of this force does not coin-

for x, and — fork in the above expression, it becomes.

(f+an’+bb +cc)__ o) +aa +bfb +cc'.¢,(f)+&c.;

but as the quantities &/, &', and ¢’ are indefinitely small, the
ad +bb' +cd

ad' 4+ 5b'4-cc’
J

products and higher powers than the first of

may be neglected,
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cide with that of the motion of the earth. Thus, sup-
pose that 2 globe at rest upon a very smooth horizontal
plane is struck by the base of a right angled cylinder,
moving in the direction of its axis, which is supposed
horizontal, the apparent relative motion of the globe
will not be parallel to this axis in all its positions with
respect to the horizon : thus we have an easy means of
discovering by experiment if ¢/(f) has a perceptible
value upon the earth ; but the most exact experiments
have not shewn in the apparent motion of the globe any
deviation from the direction of the impressed force;
from which it follows that upon the earth, ¢’(f) is very
nearly nothing. If its small value were perceptible, it
would particalarly be shewn in the duration of the oscil-
Iations of the pendulum, which would alter as the posi-
tion of the plane of iis motion differed from the direction
of the motion of the earth. Asthe most exact observations
have not discovered any such difference, we ought to
conclude that ¢/(f) is insensible, and may be supposed
cqual to nothing upon the surface of the earth.

If the equation ¢/(f)=0 has place, whatever the
force f may be, ¢(f) will be constant, and the velocity
will be proportional to the force; it will also be pro-
portional to it if the function ¢(f) is composed of only
one term, as otherwise ¢(f) would not vanish except.f
did : it is necessary, therefore, if the velocity is not
proportional to the force, to suppose that in nature the
function of the velocity which expresses the force is
formed of many terms, which is hardly probable ; it is
also necessary to suppose that the velocity of the earth
is exactly that which belongs to the cquation ¢'( f)=0,
which is contrary to all probability. Morcover the ve-
locity of the earth varies during the different scasons of
the year ; it is about one thirtieth part greater in winter
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than in summer. This variation is still more consider-
able, if, as every thing appears to indicaie, the solar
system be in motion in space ; foraccording as this pro-
gressive motion agrees with that of the earth, or is con-
trary to it, there should result during the course of the
year very great variations in the absolute motion of
the earth, which would alter the equation that we are
considering, and the relation of the impressed force to
the absolute velocity which results, if thisequation and
this ratio were not independent of the motion of the
carth ; nevertheless, the smallest difference has not been
discovered by observation.

Thus we have twe laws of motion, the law of inertia,
-and that of the force being proportional to the velocity,
which are given from experience.  They are the most
natural and the most simple which it is possible to
dmaginc, antl are without doubt derived from the na-
ture itself.of matter 5 but this nature being unknown,
they are with.respect 1o us solely the consequences of
observation, and;the.only.ones which the science of me-
chanies vequires from cxperience.

6. Asithe welocity is propostional to the force, these
-two quantities may be represented by each other, and
«all thatihasbeen previously established respecting the

- composition of forces, ;may \be applied 1o, the composi-
dion of velocities*.  It-therefore results that the rela-

P 13 & LU N S 1 e T - T R TR R A r

* Let o/, 9, and v represent the uniform velocities im.
pressed upon a body in tbe directions of three rectangular
co..ordmates, Ty 4y and 5 %y t;he spaces respectively passed over
in the time # in consequence of them ; we shall then have the
three following equations

r=d't, y==t"t, 2=v'"¢,
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five miotions of a system 'of bodies actuated by any
forces whatever, are the samie whatever may be their
common mofion ; forihis list motionresolved into three
others parallel to three fixed axes, ‘causes the partial

and the resulting motion will be uniform and rectilinear, and
determined by the equation
s:x/(x’:g/‘-l—z’):tt/(v"—l—v”Ur i P Y
in which s represents the space gone over. If v represénis
the velocity of the body, it will be equal to
2 1/(.04 z;i_vllz}c:lt;).

The co-sines of the angles which the direction s of the mo-
tion forms with the co-ordinates =z, y, and z'respectively,

are

i 1

B v v__ gY
;'—1/ (vl ‘+v”1+v“' 1) ’ ;—V (v"—i—v"‘ T ,))
'0”’
. VR TDN

Let s, , y, and 2 have the same significations as above,
and g/, g, and g denote the constant accelerating forees
impressed parallel to the axes of x, y, and z ; then the equa-
tions of the motion of the point being

a==3g t*; y=—1g"t* ; x=3g"t*;

the equations of the projections of the line passed dver upon

K]

the planes of xy and y=z, will be, as appears by extracting ¢*
from the two first and two last equations

the line passed over will therefore be a right line, and we
shall have

sy (s oA )= g e )
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velocities of each body parallel to these axes to increase
by the same quantity, and as their relative velocity
only depends upon the difference of these partial velo-
cities, it is the same whaiever may be the motion com-

If «, B,and y represent the co-sines of the angles which s
makes with o, y, and z respectively, then

S ATy Ly
VI v D W PER T POy
e g
COS.']__V (g’2+g"3+g"3)'

The accelerating force in the direction of s is constant and
equal to 4/(g' *-+g"*+¢" ), and composed of the three given

accelerating forces, as is the case with uniform motions.

Retaining the foregoing notation, and supposing that o',
9"y and v represent the initial velocities of a point acted
upon by constant accelerating forces parallel to the three
axes ; the equations of the impressed motion will be

[x:v’t+%g/ 12 5 g :’ZJ“t-{—%g”t" ; 2’:7)’" t+—;—g’” 2,
The projection of the curve passed over by the peint upon
the plane of xy, found by extracting ¢ from the two first
equations, is
j guz an
y +E_2 2% — ?-xy+zlx+By+ C=o.

A, B, and C being constant quantilies, a comparison of the
co-efficients of 22 and xy will shew that this projection is a
parabola. The projection upon one of the other planes will
also give a parabola, consequently the line passed over is a
parabola,

It may be proved that the curve passed over is of single
curvature or upon a plane, without obtaining the equations
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mon to all the bodies ; it is therefore impossible to judge
concerning the absolute motion of the system of which
we make a part, by the appearances we observe, and it
is this which characterises the law of the proportion-
ality of the force to the velocity.

Again, it results from No. 3, that if we project each
force and their resultant upoun a fixed plane, the sum of
the moments of the composing forces thus projected,
with respect to a fixed point taken upon the plane, is
equal to the moment of the projection of the resultant ;
but if we draw a radius, which we shall call a radius
vector, from this point to the moving body, this radius
projected upon the fixed plane will trace, in conse-
quence of each force acting scparately, an arca equal to
the product of the projection of the line which the
moving body is made to describe, into one half of the
perpendicular drawn from the.fixed point to this pro-
jection : this area is therefore proportional to the time.

of projection, by extracting £ from the three equations of
motion, which gives one of the form

ax+ by + cz—=
that belongs to a plane surface.
AR T v
If the velocities ;1:, E% and Z—: parallel to the three axes

at any instant whatever, are composed into one, it will be
o=y (0 ) (gD + (P g"4)

The accelerating force in the direction of the motion, or
do . .
prrd is, as may easily be proved,

g’(v’+g' t)+g"(1)”+g"l)+g’"(‘0"'g’”t)

Vi (vl+glt)z+(vu+gut)3+(,0Hl+glllt);}

F
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~

It is also in a given time proportional to the moment of
the projection of the force ; thus, the sum of the areas
which the projection of the radius vector would describe
in consequence of cach composing foree, if it zcted
alone, is cqual to the area which the resultant would
make the same projection describe. It therefore {ol-
lows, that if a body is projected in a right line, and
afterwards solicited by any forces whatever directed to-
wards 2 fixed point, ifs radius vector will always de.
seribe about this point areas proportional to the times;
because the areas which the new composing quantities
cause this radius to describe will be nothing. Inversely,
we may see that if the moving body describes areas
proportional to the times about the fixed point, the -re-
sultant of the new forces which solicit it is always di-
rected towards this point.

7. Let us next consider the motion of a point splicited
by forces, such as gravity, which seem to act continu-
ally.

The causes of this, and similar forces which have
place in nature, being unknown, it is impossible to dis-
cover whether they act without interruption, or, after
successive imperceptible intervals of time ; but it is easy
to be assured that the planomena ought to be very
nearly the same in the two hypothescs; for if we repre-
sent the velocity of a body upon which a force acts in-
cessantly by the ordinate of a curve whose abscissa re-
presents the time, this curve in the second hypothesis
will be clianged into a polygon of a very great number
of sides, which«for this reasen may be confounded with
the curve. 'We shall, with gcometers, adopt the first
hypothesis, and suppose that the interval of time which
separates two counsecutive actions of any force whatever
is equal to the element dt of the time, which we will de-
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note by ¢, It is evidently necessary to suppose that the
action of the force is more considerable as the interval
is greater which separates ifs successive actions; in
order that alter the same time ¢, the velocity may be the
same ; the instantancous action of a force ought there-
fore to be supposed in the ratio of its intensity, and of
the element of the time during which it is supposed to
act. Thus, representing this intensity by P, we ought
to suppose at the commencement of each instant dt, the
moving body tobe solicited by a force P.df, and moved
uniformly during this instant. This agreed upon :

It is possible to reduce all the forces which solicita
point M to three, P, Q,and R,acting parallel to three
rectangular co-ordinates z, y, and z, which determine
the position of this point; we shall supposcthese forces
to'act in a contrary direction to the origin of the co-
ordinates, or to tend to iucrease them. At the com-
‘mencement of a new instant d¢, the moving 'body re-
ceives -in the divection of jeach of its co-ordinates, the
increments of force or of velocity, P.dt, Q.dt, R.dt.
The velocitics of the point M parallel to these co-ordi-
dy
o
small time, they may be suppesed to be uniform, and,
therefore, equal to the elementary spaces divided by the
element of the time. The velocities by which 'the
moving Tedy is actuated at the comrmencement of a
new instant, are consequently,

dr dy’ _ dz
Tl Qi Zz't+R‘dt'

- dx ds " . 3
nfltes are -, yand %5 for during an indefinitely

or

dx

dr dx 0
Et—l—d. d;—"d- ;17+P.(.’, P

dy dy dy
g T R
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dz dz dz
‘J‘t+d. Zl—t_—d. J2+R.dt;
but at this new instant, the velocities by which the
moving body is actuated p“u'allel to the co-ordinates
X

d dy
x, ¥, and z, are evidently —[-d =3 +d “
dz dz dax
;I-t—l—d . d—t‘,' the forces —.'d--d—[—‘—P.dt,—d-"l—z + Q. dt,

and —d.%;—{— R.dt, ought thercfore to be destroyed, so

" that the moving body may in consequence of these
sole forces be in equilibrio. Thus denoting by 3z, 3y,
and 3z any variations whatever of the three co-ordinates
Z, y, and 2z, variations which it is not necessary to con-
found with the differentials d», dy, and dz, that ex-
press the spaces which the moving body describes pa-
rallel to the co-ordinates during the instant dt ; the
equation (b) of No. 3 will become

0.—.3;::.% d.%s—-P.dx%—{—Sy.g b0 dt%
oz $a. Z—i——R.dt%. )

If the point M be frec, we shall equal the co-efficients
of 3x, 3y, and 3z separately to nothing, and, supposing
the element d¢ of the time constant, the differential
equations will become *

d*x d’-

L =

(l t’

") . dl X S d y d" 2 )4
* The equatlons-d—t—z. =i Ta=® and 15— R, are

sufficient to enable us te discover the velocity, the trajectory
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If the point A7 be not free but subjected to move
upon a curve line or a surface, therc must be extracted

and the place at any given time, of a point not constrained
to move along aline or a surface, but continually acted upon
by forces which are given every instant both in magnitude
and direction.

Thus supposing for greater simplicity, that the point
moves in the plane zy, P and @ being constant or variable
but given ; by extracting the time from the two equations
ﬁf = .d_?.g
d t? dt*
find a relation between z and y which will give the trajectory
of the point. Tn a like manner, the relation between x and
¢, or y and £ may be found, which will give the position of
the point for any given value of the time ¢. The values of
-‘-lf and dy
d¢

the directlons of » and y, from which we may obtain the
real velocity v of the point; for

==/ (@) + (Z)5:

The first of the two constant quantities which the above.
double integration requires, will be determined by the value
of the velocity at a given instant, such as the commence-
ment of the titne £,  The second will depend upon the situa-
_ tion of the point with respect to the two axes at this instant.

If the moviug body be attracted iowards a fixed point by a
single force, the integra!s of the equations

=R, and integrating them twice, we shall

will likewise give the velocities of the point in

d* x y d*z
foat s e
ai ? do ==hls de

may be readily obtained in the following manner,

Let the origin A of the co-ordinates be placed at this
fixed point, and suppose the moving body m in any position,
having x, g, and 2 for its reciangular co-ordinates ; then its
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from the equation (f), by means of the equations to
the surface or the curve *, as many of the variations

distance from the point 4 will be représented by Vm;

and the force(acting upon it by — §, which when resolved in
the directions of-x, ¥, and 2 gives
R 5 Pty -_— 8z
P e .__._._‘.y_.._.., R— ___S_ "
‘/xz_hyz_*_zz 1/x2+‘y:+zz sz+yz+zz

The three first mentioned equations, by propermultiplication
and subtraction, evidently give the three following,

adry — ydPa—(xQ — yP).dt?,

2diw — pdiz=—(2P — xR ).d¢?,

yd*x — 2d’y—(yR — 2Q).d¢>.
If the above values of P, @, aud R are substituted in these
equations, their second members will vanish,. and their first
will give by integration, the following xdy — ydr—cdt,
ady — ydr=c dt, and yds — zdy=c"d¢t, ¢, ¢/, and ¢ being
constant quantities ; these equations shew, as will be here.
after demonstrated, that equal areas are idescribed in cqual
times, by the projections of the line 4m upon the planes of
the co-ordinates. 1f these integrals be added together, after
havingmultiplied the {irst by 2, the second by y, and the third
by z, the equation cz-- dy--c"a—=0, whichbelongs to a plane,
will be obtained. .

# If a point moves upon a curve liue, or surface, it may
be supposed free, and acted vpon by a force equal and op-
posite to the perpendicular pressure upon the curve orsur-
face. Let us, for example, ;suppose that z—=f(x,y) is an
equation to a curve surface, by differentiating it, we shall have

dz dz : dz ~ (d=
dz:(c—l;)dx+(@)dy, or,lfp:(zr-) and q—(@)’
- de=pdr+tqdy. Let ﬂf:V(l+pz+q’), then it may be

easily proved that the normal of the curve surface forms ‘with
the axes &, y, and =, angles, the co.sines of which are
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3z, dy, and 3z as it will have equations, and the co-effi-
cients of the remaining variations must be cqualled to
nothing *.

1%, 1%, andjTli respectively, If N represent aforce in the
direction of the normal, equal and opposite to the pressure
upon the curve, ifs compouents in the directions of the axes
PN g 2Ry Gy
x, ¥, and 2 will be ot A j}‘ and ﬂ-respecuvely.; the
two first forces are négative, because they tend to diminish
the co.ordinates « and y, if the curve surfice have its con.
vexity towards the planes of z3 and y=z, ascan'easily be
proved. The point may therefore be regarded as free, and

Np " Ng N
acted upon by the forces P ———=-, Q T and R+H.. 5

M’
which wiil give the following equations,
d*z Np
=P 3
dxy Ngq
8 Do
d*z N
TRy

- .

* When the motion takes place in a resisting medium, the
resistance of the medinm may be regarded as a force which
acts in a direction contrary to the motion of the body, ILet
I represent this resistance, then its moment will be —1.3, if
i is supposed to be equal to ¥/ (z—0)* + (y—m)*+ (z=—n)*
I, m, and n being the co-ordinates of the origin of the force
1. By diﬁ'erentiation

If the origin of the force I is supposed to be in-the tangent
of the curve described by the body, and indefinitely near to
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8. 1t is possible in the equation (f) to suppose the
variations 3z, 3y, and 3z equal to the differentials dz,
dy, and dz, because these differentials are necessarily
subjected to the conditions of the motion of the moving

it ; it may be conceived that ¥ — b=—dx, y — m=—=dy, = —n
=dz, which gives, by representing the element of the curve
by ds, the following equations,
z—{¢ dx y—m dy 2—n dz
T e TN g 7, P O o MR,

: Z () ds Z ds

_ consequently,

Syt G dy dz
d¢ =5 3.:C+Z—s. 3_1/-{—‘7}.3:.

If the resisting medium be in motion, it will be necessary
to compose this motion with that of the body, in order to
obtain the direction of the resisting force. Let dx, d3, and
dy denote the small spaces through which the medium passes
parallel to the axes of the co.ordinates @, y, and =z, during
the time that the body describes the space ds, it will be
proper to substract these quantities from dw, dy, and ds, in
order to have the relative motions.. As dS:de"’-{-l(I/z + dz?»
if it be supfosed that '

do—=V (dv —da)*+(dy — dB)*+ (ds — dvy)?,
the following equation may be obtained,
. dx —dx dy — dB dz — dy
9= de it de ' 33/—*— do ° 3.
It should be observed with respect to the resistance I, that

ds
it is generally a function of the velocity TR butin this case

in which the medinm is in motion, it is a function of the re-

HGEE ortiel do
ative ‘ve oeity T
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body M. By making this supposition, and afterwards
integrating the equation (f), we shall have:

%’M T e f(P.detQ.dy+R.dz) ;

¢ being a constant quantity. ﬁ%——}' & isthe square
of the velocity of M, which velocity we will denote by
v; supposing therefore that P.dr-+Q.dy+4-R.dx is
the exact differential of a function ¢, we shall have *

P=c1+2¢. (g)

# In every case in which the formula P.dr+Q.dy-}R.dz
is an‘exact differential of the variables z, y, and z, the equa.
tion (g) will give the velocity of the point M at any part
of its trajectory, if we know it at any one determinate place.
For as ¢ is a function of z, y, and z, let it be represented
by f(x,y,%), also suppose A to denote the known velocity at
the point where the co-ordinates are @, &/, and o", then we
shall have the equations

v2=c+-2f(2,4,2);
A*=c+2f(a,d ,d'),
and consequently
v2— A2==9f(2,y,2) — 2f(a,dyd").
This equation shews the value of v, when A4 and the co.or-
dinates x, y, 2, a, @, and &' corresponding to the velocities
v and A4 are given.

It appears from the above that it is possible to determine
the difference of the squares of the velocities at two points of
the trajectory, by meauns of the co-ordinates of these points,
without knowing the curve along which the moving body
passes in going from one point to the other,

‘The above does not hold good if P.dz+4Q.dy-+R.dx be
not an exact differential, as for instance, when the forces

G
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This case has place when the forces which solicit, the
point M, are functions of the respective distances of
their origins from this poiat, which comprehends nearly
all the forces of nature.

In fact S, S, &c. representing these forces, s, s,
&c. being the distances of the point M from their
origins, the resultant of all these forces multiplied by
the variation of its direction, will be equal, by No. 2.
to £.8.3s; it is also equal to P.3x+Q.0y-+-R.3x ; we
have therefore

Pl3r4-Q.0y+R.32==2.8.3s ;
and as the second member of this equation is an exact
differential, the first is likewise. It results from the
equation_ (g), Ist. That if the point M is not solicited
by any forces, its velocity is constant, because in this
case 9==0 *, It is"easy to becassured of this otherwise

P, Q, and R arise frem friction or the resistance of a fluid,
and contain in their values the velocities g“f, d;y’ an i 5
dt dt dt
which case the expression is net an exact differential of a
function of #, y, and 2,%regarded as independent variables.
For to integrate ¢ undersuch circumstances, it would be ne.
cessary to substitute the values of these variables and their
differentials in functions of the time, which could not be done
except the problem had been previounsly solved.

* If the point is not acted upon by any accelerating force,
but moves from an initial impulse, the forces P, €, and R
are nothing and ¢ vanishes, therefore v*——c, or the velocity
is eonstant, consequently the velocities in the directions of
the axes z, , and » are constant, and may be supposed ré-

in
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by observing that a body moving on a surface or curve
liney loses at each rencounter with the indefinitely small
plane of the surface, or of the indefinitely small side of
the curve, but an indefinitely small portion of its velo-
city of the second order *. 2ndly, That the point M in
passing {rom one given point with a given velocity, to
arrive at another, will have at this last point the same
velocity, whatever may be the curve which it shall
bave described.

Bat if the body is not forced to move upon a deter=
minate curve, the curve described by it possesses a si-

spectively equal to the invariable quantities ¢, ¢/, and ¢,
We therefore have the equations
de__, dy__, dz_ ,
d—t_c ’ d—;———d, -&—t.._c’ 5

from which by extracting d¢, we shall obtain ¢'dr==c'dy, and
¢"dy—c'dz; which give by integration ds==a+cy, and
d"y—b--c'z for the equations of the projections of the tra.
jectory upon the planes of ay and yz; but these equations
belong to straight lines, consequently the trajectory is a
straight line,

* It is proved in most treatises upon mechanics, that if
a body moves along a system of inclined planes, the velocity
lost in passing from one plane to another, is, as the versed
sine of the angle which the planes make with each other. If
the number of planes in a given curve are indefinitely increas-
ed, the supplements of their angles of inclination, and con.
sequently the chords become indefinitely small ; by the rules
of trigonometry we have versed sine =— —a—-—-——ChOsz 3  there.

2radius

fore if the chord is an indefinitely small quantity of the first
order, the versed sine is an indefinitely small one of the se.
cond, consequently the velocity lost may be regarded as an
indefinitely small quantity of the second erder. :
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milar property to which we have been conducted by
metaphysical considerations, and which is, in fact, But
a remarkable result of the preceding differential equa-
tions. It consists in this, that the integral fods com-
prised between the two extreme points of the curve
described, is less than any other curve, if the body is
free, or less than any other curve subjected to the same
surface upon which it moves, if it is not entirely free.
To make this appear, we shall observe that P.dr-}
Q.dy-}-R.dz being supposed an exact differential, the
equation (g) gives
=P .30} Q.3y}R.3z
the equation ( f ) of the preccdmv numbcr becomes alse -
0=dx.d. dt+8y d. dt+3" dz — vdt. 3 v.
Naming the clement of the curve described by the
moving body ds, we shall have _
- odi=—ds ; dzt/dx—‘—-l—m; *
and by equating,

dr dy dz
O—;Sx.d.g—t-{—Sy.d.E—i— 2.d. 7 —ds.do ; h)

by differentiating, with respect to 3, the expression of
ds, we shall have

O b A= b di b 3. dy 5 s,
.

* That ds—y/ (dz*+dy* + dz*) is evident from consider-
ing that the co-ordinates of s and s-}-ds are x, y, 2 and o4 dz,
y+dy; 2-4-dz ; consequently,
shds—s=y/{ (a+ do—2)*+(y+ dy—y)*+ (2 -+ dv—3)2 },
which gives ds—=y/ (dw*+dy*~4-dz?).
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'The characteristics d and ¥ being independant*, we
mdy place them one before the other at will; the pre-
ceding equation can therefore be made to take the fol-
Iewing form,

d. §dr. dxt-dy. dy4-ds. 3z } dz

o 2y
dr.d. o —dy.d.

V.0ds=— T o a2

dz
-—Ez.d.‘-i—t 5

# Tt “may here be mecessary to observe, that when equa-
tions contain the differentials dz, dy, and dz, and the varia-
tions Sx, 3y, and 3z at the same time, the differentials and
variations .are to be supposed constant with respect to each
other, in all the various processes of differentiation or inte-
gration. The order in which. these processes are performed
is also indifferent as to the result. Thus J.dr=—d.3z, 3.d*x—
d.3.dr=d®x, d.dr—dm. 3.do—rmgr—d"x, also Yfu—[Ou, u
being here supposed a function of z, y, =, dr, dy, dz, dz,
&c., thesign f denoting the integration of the function with
respect to the characteristics dv, &c. If u be a function
of z, y, and =, the equation u=—f(x,y,3) gives

4 % -—(du)l +(rlu)d +(du)d~,
also 2o Su)s +( )3 +( )sm

in which we evidently have from fhe process of dlﬂ'erentiaﬁon

(@)=G2) @)= (E6D)

As the! nature of these notes will not permit me to enter fully
upon the subject of variations, I shall refer the reader, who
is desirous of information respecting them, to the Traite' da
Calcul Differentiel et Integral pour §. F. Lacroix. . The
Traite Elementaire de Calcul Differentiel et de Calcul In-
tegral, by the same author, contains an abridged account of
them frem the large work, "
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by subtracting from the first member of this equatieu,
the second member of the equation (&), we shall have

d.(dx.Sx4-dy.Sy+dz.0t)
3.(‘0d5): ( % x+d‘i{. : »

This last cquation being integrated by relation to the-
characteristic d, will give
dzdr4-dy Sy-4-dz.3z

de £
If we extend the integral to the entire curve described
by the moving body, and if we suppose the extreme®
points of this curve to be invariable *, we shall have
3. fod s==0; that is to say, of all the curves along
which a moving body, subjected to the forces P, @,
and 72, can pass from one given point to another given
point, it will describe that in which the variation of
the integral fods is nothing, and in which, consequently
this integral is 2 minimum. If the point moves along
a curve surface without being acted upon by any force,
its velocity is conslant, and the integral fods becomes

3. fods=—const.-|-

# If the point from which the body begins to move be
fixed, the quantities dx, Jy, and 3z are there respectively
equal to nothing, therefore the constant quantity of the
equation
dr.3z+dy.dy + d.z

de
is equal to nothing, as its other terms vanish at that point..’
If the quantities d«, 3y, and 3 are also respectively equal to
nothing at the end of the motion, from the point where it
do.dx+ dy. Sy dz.z

dt
‘nothing, therefore 3fvds is equal to nothing, that is, the va-
riation of the quantity fods is a minimum.

frds—const. +

equal to

ends being fixed, we shall have
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®fds ; thus the curve described by the moving body is,
in this case, the shortest which it is possible to trace
upon the surface, from the point of departure. to that of.

«

3 5
arrival ®, 5 v:’“a’.&nﬂ; boo

# Maupertuis, in two memoirs, one sent to the Academy
of Sciences at Paris, in the year 1744, and the other to that
of Berlin, in the year 1746, asserted, that in all the changes
which take place in the situation of a bedy, the product of
the mass of the body by its velocity and the space which it
has passed over is 2 minimum. This he called the principle
of the least action, and it was applied by him to the discovery
of the laws of the refraction and the reflection of light, the
laws of the collision of bodies, the laws of equilibrium, &c.
Ealer afterwards shewed that in the trajectaries of bodies

acted upon by central forces, the integral of the velocity #ee=™"

multiplied by the element of the curve isalways a minimum,
which is an excellent application of the principle of the least
action to the motions of the planets. This general principle,
which was assumed as a metaphysical truth, appears evidently
to be derived from the laws of mechanics.

The following will be sufficient to shew the reader the way
in which the priuciple may be used to discover the laws of the.
refraction and of the reflection of light,

Suppose a ray of light to pass from one point to aunother,
if the points are in the same medium, the velocity of the ray
is constant, the path is a straight line and the principle ob.
vious ; if they are in two different mediums, let  represent
the velocity of the ray, and s the space it passes through, in
the first medium, and o' its velocity and s' the space passed
through by it in the second medium ; we shall then have the
quantity vs4-v's’, which is 2 minimum for the value of fods,
The solution of this question is very easy and leads us to the
following equation, o, sin. a=—v. sin. b, in which a repre-
sents the angle of incidence and b the angle of refraction at
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9. Let us determine the pressure which a -point
moving upon a surface exerts against it. Instead of
extracting from the equation (f) of No. 7, one of the
wvariations 3z, 3y, and 3z, by means of the equation of
the surface, we may by No. 3, add to this equation the
differential equation of the surface maltiplied by an in-
determinate quantity —ad¢, and afterwards consider
the three variations 3z, 3y, and 8z as independant quan-
tities. ' Let therefore ¥—0 be the cquation of the sur-
face; we shall add to the equation (f) the term
— A.du.dt, and the pressure with which the point acts
against it will be, by No. 8, equal to

/(O HE) ()

Let us now suppose that the point is not solicited by
any force, its velocity o will be constant ; if we observe
lastly, that vdt—ds, the element d¢ of the time being
supposed constant, the element ds of the curve de-
scribed will be so likewise, and the equation (f) aug-

the surface of the second medium. The above equation
shews that the ratio of the two sines depends upon that of
the velocities of the ray in passing through the different
mediums,

If the ray in passing from one point to another is reflected
at the surface of the second medium, the velocity will be
constant, and the path a minimum ; in which case, it may
be readily proved, that the angle of incidence of the ray in
passing from one point to the surface of the second medium,
is equal to the angle of reflection from it to the other point.
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mented by the term —a.0u.d¢, will give the three fol-
lowing,

2 dPe du) ¢ (du.) 1
o e i dx dt" dy/’

o= ()

from which we may obtain

SYOECHOE

V@) Py ) (d )
st
but asds is constant, the radius of curvatare of the curve
described by the moving body is equal to
ds* ;
V(&) (dy) (a5

by naming this radius r, we shall have

=/ () D=

that is to say, the pressure exercised by the point
against the surface, is equalto the square of its velocity
divided by the radius of curvature of the curve which
it describes.

If the point move upon a spherical surface, it will
describe the circumference of a great circle of thesphere
which passes by the primitive direction of its motion :
for there is not any reason why it should move more to
the right than to the left of the plane of this circle ; its
pressure against the surface, or, what comes to the
same, against the circamference which it describes, is
therefore equal to the square of its velocity divided by
the radius.of this circumference.

If we imagine the point to be attached to the end of
a thread supposed without thickness, having the other

"
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extremity fastened to the centre of the surface; it is
evident that the pressure exercised by this point against
the circumference will be equal to the tension which
the thread would experience if the point were retained
by it alone. The effort which this point makes to
stretch the thread, and to go farther from the centre of
the circumference, is, what is called the centrifugal
force ; therefore the centrifugal force is equal to the
square of the velocity divided by the radius.

In the motion of a point upon any curve whatever,
the centrifugal force is equal to the square of the velo-
city, divided by the radius of curvature of the curve,
because the indefinitely small arc of this curve is con-
founded with the circumference of the circle of curva-
ture ; we shall therefore have the pressure which the
point exerts against the curve that it describes, by
adding to the square of the velocity divided by the 1a-
dius of curvature, the pressure due to the forces which
solicit this point. 1In the motion of a point wpon a
surface, the pressure due to the centrifugal force, is
equal to the square of the velocity divided by the ra-
dius of curvature of the curve described by this point,
and multiplied by the sine of the inclination of the
plane of the circle of curvature to the tangential plane
of thesurface * : by adding to this pressure that which

* Suppose the radius of curvature RP or r, (fig. 7.), of
the point P of the curve described by the body upon the sur-
face, to be produced to 4 ; let P4 represent the centrifugal

2
force -Ii of the body moving in the curve ; from P draw the
r

line PB perpendicular to the plane tangent of the surface at
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arises from the action of the forces that solicit the
point, weshall have the whole pressure which it exerts
against the surface,

We have seen that if the point is not acted upon by
any forces, its pressure against the surface is equal to
the square of its velocity divided by the radius of cur-

P; draw 4B perpendicular to PB let the line DPC be the
section of the plane tangent caused by a plane passing thro:gh
the points ABP perpendicular te the plane tangent ; then
as AB, CPD, are respectively perpendicular to the line PB,
they are parallel to each other, therefore the angle BAP is
equal to the angle DPR, but this last angle is that which
the plane of the circle of curvature makes with the plane
tangent, for as the intersection of the plane of the curve and
of the plane tangent of the surface is the tangent to the curve
at P,the line P B is perpendicular to it ; likewise the radius of
curvature of the curve is perpendicular to its tangent at the
same point, consequently the plane passing through the lines
BP, PR, and the line PD in it drawn from the point P,
are perpendicular to the tangent of the curve ; therefore the
angle DPR is the angle which the plane tangent makes with
the plane of the curve. By trigonometry in the right angled
triangle PAB, we have

rad. (1) ¢ sine BAPof DPR': : P4 (f) . PB,
r

therefore P B:?. sine DPR, but PB represents the cen.
trifugal force of the body moving on the surface, consequently
the centrifugal force of a body moving upon a sygfgce, is
equal to the square of the velocity divided by the radius of
curvature of the curve described by this point. and multiplied
by the sine of the inclination of the plane of the circie of cur-

vatare to the tangential piane of the surface.
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vature of the curve described, the plane of the eircle
of curvature, thatisto say, the plane which passes
by two consecutive sides of the curve described by the
point, is, in this case, perpendicular to the surface.
This curve relative {o the surface of the earth, is called
a perpendicular to the meridian, and we have proved
(No. 8) that it is the shortest which it is possible to
draw from one point to another upon the surface.

10. Of all the forces which we observe upon the
earth, the most remarkable is gravity; it penetrates
into the most inward parts of bodies, and without the
resistance of the air, would make them fall with an
equal velocity. Gravity is very nearly the same at the
greatest heights to which we are able to- aseend, and at
the lowest depths to which we are able to descend ;
its direction is perpendicular to the horizon; but in
the motions of projectiles, we may suppose, without
sensible error, that it is constant, and that it acts along
parallel lines ; on account of the small extent of the
curves which they deseribe relative to the surface of
the earth. These bodies moving in a resisting fluid,
we shall call @ the resistance that they expericnce, it
is directed along the side of the curve described by
them, which side we will denote by ds, we shall more-
over call g the force of gravity. This agreed upon :

Let us resame the equation (f) of No. 7, and sup-
pose the plane of z and 7 horizontal, and the origin of
« at the most elevated point; the force g will produce
in the directions of z, y, and z, the three forces

d; dz
— B, —a—B.a%, and — B.J;; weshall therefore have,

dr &y o t_l_«'-’ ¢
3 @== =B R_——-B-ds-{—g,
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and the equation (f) will become -
2 dx dx dy dy
0=z § Rl R % + g AL R P %

e g ¢ g g % ;
If the body be entirely free, we shall have the three
equations .

. gy dx : dy dy
0—d. d—t+[3 5 dty =0—d. +B T dt
0—d. ~—+-B e dt—gdt.

The two first will give

dy gds_de ydy o

PR T Ao s S
from which, by iategration, we shall obtain dr—=fdy ;
f being a constant quantity. Thisis the eqnation to an
horizontal right line; therefore 1the body moves in a
vertical plane. By takinz for this plare that of £ and

%, we shall havey—O; the two equations
0—=d. dt+6 “.dt; 0—d. ———|—6 a't—-gdt~

will give, by making dr constant,
ds.d*t dz dx d*t
b oL il o T +B d“" e
from which we may obtain gdif—d"z, and by differen-
tiating 2gdt.d*t=—=d?z ; by substituting for d*¢ its value
gdtd
ds

b 2a
, and for d¢* its value dz'-'we shall have

8 ds dz
g 2(d)T
This equation gives the law of the resistance B neces-
saty to make a projectile describe a determinate curve.
If the resistance be proportional to the square of the

h being constant in the

velocity, 8 is equal to Iz d 2
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case where the density of the medium is uniform. We

shall then have ,
B h ds*  h.ds

g gdt- &z’

and from substituting the value of— hds_._ad Pl which
gives by integration

d2 = _g 2hs

dz* e iy

a being a constant quantity*, and ¢ the number whose

* The value of a may be found as follows : Let gds* be
X - gl 2h
substituted for d*z in the equation Z—-—;:Qac s’ then it is
x? g 2hs dx )
THE T3, but T is the velocity of
the projectile parallel to the axis of x, let o represent
the velocity of projection, and 0 the angle which its di-

evident that

rection makes with that axis, then (?)Z:v’ c0s.* 6 ;
4

consequently as =0 at the commencement of the motion, we

have v3cos. ’0——-—5- and a—

2a T 92%.c0s.%6’

1K) 2h:
therefore f—._zz ___g__'c '
: dt > v%cos.?d

’ By supposing dz equal to pdz, this last equation may be

s 2h
changed into the following @:___g_.'c 5; but as ds—
dx 0% cos.*§

Vdzi4d “d 2r—dxy/ 14 p*. by multiplying the first member
of this equation by dxy/ 7 p2 and the second by ds it will

XA g 2hS ¢
become dpy/ 14 pr—=r— .- ds. The integral of

dpy 14p* is 2{pV 14p*+-log.(p++ 14p*) },and that of
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hyperbolical logarithm is unity. 1f we suppose the re-

sistance of the medium to be nothing, or /=0, wec shall

have, by integration, the equatio'n to a parabola
s=ar*+brte ;

b and ¢ being constant quantities,

g ghs z ot
P oori3C ds is oicos i B Bh therefore §24 14p*

— g iy ok .
log.(p—l-x/-l +P2):C+F.‘¢5?.Te‘—h' , O being a constant
quantity, which may be determined by observing, that at the
commencement of the projection s=—0 and p—tang.§, conse-

quently,C—tang.6y/ l+tang.’-9+l°g'(ta“g'e+v 1-}-ran.?§)

S T By substituting in the above integral the

] . dp g 2hs
value of ¢ obtained from the equation L= tosTHC 9
we shall have the following

. dp
TV 1 pr 108 (pHy 14 pt) — U3
which gives, as dz—pdr,

dux

dx pdp :
Th{pY 14 prlog.(p+ v L4 p2) — C}
By the integration of these equations the values of z and 2
would be given in functions of p. A third equation may
be obtained which woald give the time in a function of the
same quantity, by substituting the value of dx derived from

H .

in one of the preceding equations,

the equation df2—

and extracting the square root, which will give the following
dt 24 — -
TV ehipV 14 pt log.(p¥/ 14p1)— Ci3
If these three equations could be inlegrated so as to have a
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The differential equation d'z==gdi® will give di'==
2 5 ! Y
~—.dz*, from which we may obtain t=—=14/ 2¢ +f.
< g

1f z, x, and ¢ are supposed to begin together, we shall

finite form, the complete solution of the problem would be
ohtained. In this case, the two first, by the elimination of
P, would give the trajectory of the curve. This problem
has exercised the skill of mauyeminent mathematicians from
the time of Newton to that of Lrgendre, but all their solu.
tions are very complicated. The trajectory may be described,
from points by means of the two first eqﬁations, and tables
made for forming it at any inclination.  Vide the memoir
of Moreau, in the eleventh cahier of the Journal de 1> Ecole
Polytechnique, 'The descending branch of the curve has an
asymtote, as appears from making p indefinitely great, which

¢ dp dp . : 1
gives do— i and dz:E, or by integration, :r__c’—.— WP

1 . o3
i log. p, ¢’ and ¢’ being constant quantities,

From these two equafions it appears, that if p be indefi-
nitely increased, the value of z will become indefinitely great,
although is does not increase so fast as p, ;and that of » will
approximate to ¢ as its limit. If, therefore, on the hori-
zoatal axis of z, at a distance equal to ¢/, from the origin of
the co-ordinates, a perpendicular be let fall, that line will be
an asymtote to the descending branch of the curve.

When the angle of projection of the body is very smal
with respect to the horizon, and the initial velocity not con.
siderable, that part of the curve abeve the horizontal line of
projection may be readily found by approximation, and is
applicable to th ease of ricochet firing. Vide amemoir of
Borda amongs: those of the Academie desSciences, 1769.

and 2 =¢" +
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have e==0 and f'=—0; consequently i=—=2» \/ 2% and
s .

z=—ax’-}-bx, which give

__.it: 2 g
== - bi?. o=

These three equations contain the whele theory of
projectiles in a vacunuwm ; it results from the above,
that the velocity is uniform in an horizontal direction,
and in a vertical one, it is the same as that which would
beacquired by the body falling down the vertical.

If the body falls from a state, of rest, b will vanish,
and we shall have dgf;zgt ; z==1gt®; the velocily
therefore increases as the time, and the space increases
as the square of the time.

It is easy, by means of these formula, to compare
the centrifugal force to that of gravity. It has been
shewn by what precedes, that v being the velocity of a
body moving in the circumference of a circle, whose

2
radius is r, the centrifugal forece is -zi; Let & be the

height from which il ought to fall to acquire the velo-
city v; we shall have by what precedes;, v*=—=2gh ;
from which we may obtain 2;_—__0'?; If h==%r, the
centrifugal force becomes equal to the gravity g ; thus
a heavy body attached to the extremity of a thread
fastened by its other extremity to an horizontal plans,
will stretch this thread with the same force asif it were
suspended vertically, provided, that it moves upon this
planc with the velacity which it would have acquired
by falling from a height equal to half thelengti of the
thread,
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11. Let us consider the motlon of a heavy body cn a
spherica! surface.

By naming its radius r, and fixing the origin of the
co-ordinates x, y, and z at its centre; we shall have
r*—1z%—y"—2*=—0; this equation compared with that
of u==0, gives u—*—1*—y*—=*: by adding there-
fore to the equation (f) of No. 7, the function 3 mul-
tiplyed by the indeterminate —adf, we shall have

O—ng 2 tonr. dz§+sy§d"i’+2xy dzg T
$ 0.0 o dt——gdtg

an cquation in which we may equal separately to no-
thing, the co-eflicients of each of the variations 3z, 3y,
and 3z, which will give the three followinc equations,

dr
0—d. d‘t—{—.‘?}\\x.dt 5 ‘
0=d.f’ﬁ+9xy.dz ; Lo
el

Od. ..+9x Adi—gdt |

The indeterminate A makes known the pressure which
ihe moving body exertsagainst the surface. This pres-

sureis by No. 9 equalto A\/(d“) ( )’-{-(du)a

it is consequently equal to 2ar; but by No. 8, we have
dr?*4-d y*4-ds?

e-2gr——— i df‘ +“—7
o being a constant quantity ; by adding this equation
to the equations (A4) divided by d¢, and multiplied re-
spectively by #, y, and z ;\and observing, lastly, that
the differential equation of the surface is O—zdz-t-ydy
~}-2dz, whick, by differentiation, gives

O==rd’ 24y dy+-2d* s+-da*+-dy+ds* ;
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we shall find
QAT:—-———C_}’ng.
7
1f we multiply the first of the equations (4) by — y,
and add it to the second multiplied by x, we shall have
from integrating their sum
sly—yis_,
RS e
¢ being a new constant quantity.
The motion of a point is thus reduced to three differ-
ential equations of the first order
rdotydy— ~—z2dx ;
xdy, _/——yd.l‘--L" dt ;
dx*+-d y*+-dz
i __c—}-erz.
By raising each member of the two first equations to
the square, and then adding them together, we shall

have
(*4y° ). (d*+-dy? )=—=c"di*+-=*d3* ;
if we substitute in the place ot 2’3" its value r"—2?,
dx + v dz*
and in the place of ——_—<_its value c-2gz— 5 e
shall have, by supposing that the body departs from

the vertical,

—rdz

vV (ri—s?).(c+252)—c*
The function under the root may be changed to the
following form, (a—z).(z—b).(2g2+f) ; @, b, and
[ being determined by the equations

f_Qg(rz-‘-ab)’ ¥

T a+tb YV
28 (r—at—ab—0" );

_ at-b
c,",:‘.’g, (r*—a?).(r*—b)

a--b

7.
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It is possible thus to substitute for the constant quan-
tities ¢ and ¢’ the new ones ¢ and b ; the first of which
is the greatest value of z, and the second the least. By
making afterwards

sin. 9—‘/ g

a—b’
the preceding differential equation will become
S V2 (at+b) a9
Vg.{((l+b)‘+r‘——b‘} V' 1—vsin. 26
«t*—b*

9 being equal tomz—.ﬁtﬁ'
The angle @ gives the co-ordinate s by means of the
equation
¥=—=a.C0s."8-}~b.sin.?6,
and the co-ordinate = divided by r, gives the co-sine
of the angle which the radius r makes with the vertical.
Let @ be the angle which the vertical plane passing
by the radius r, makes with the vertical plane passing
by the axis of # ; we shall then have *

J:V;Z:?—.cos.w; —4/ 1" —=%.sin. ;
which give xdy—ydr=—(r"—2").dw; the equation
xdy—ydr==c'dt will also give

c'dt

o==u %
72eg??

, * For 1/r2 2? is the projection of the line 7 upon the
plane of xy, and if from the extremity of Vr—za perpen-
dicular be drawn to-the axis of x, we shall have Vr—z
: @ :: rad. (1) : cos. @, therefore z—4/7°—=2% . cos. =.
In a similar manner we shall have y—y/72_32.sin. @
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by substituting for s and d¢ their preceding values in 8,
we shall have the augle = in a function of 6; thus we
may know at any time whatever the two angles 6 and @ ;
which 1s sufficient to determine the position of the mov-
ing body.

Naming the time which is employed in passing from
the highest to the lowest value of 2, the semi-oscillation
of the body ; let LT represent this time. To determine
it, it is necessary to integrate the preceding value of d¢
from 6=—=0 to 6—Lix; « being the semi-circumference
of a circle whose radius is unity : we shall thus find

———7;\/ \/ (aifbgaii)_ P {H—(é)jﬁﬂ-

(5)+ () e §

Supposing the point to be suspended from the extremity
of athread without mass, which is fixed at its other ex-
tremity, if the length of the thread isr the point willmiove
exactly as in the interior of a spherical surface, and it will
form with the thread a pendulum, the co-sin¢ of whose

¥ i ¥ b
greatest distance from the vertical will be;. If we sup-

posc that in this state, the velocity of the moving body
is nothing, it will oscillate {in a vertical plane, and in

this case we shall have a—r, fy’::r;b. The fraction

r—b ., .
- 1 the square of the sine of half the greatest angle

which the thread forms with the verfical; thc entire
duration 7 of the oscillation of the pendulum wxll there-
fore be
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oo/ 2 () (G
(;:2:2)( ?) + e

A g —b
If the oscillation is very small, r—ﬂ;—— is a very small

fraction, which may be neglected, and we shall have

T:*rz.'\/g ;

the very small oscillations are therefore isochironous or
of the same duration, whatever may be their extent ;
and we can easily, by means of this durauon and of
- the corresponding length of the pendulum, determine
the variations of the iniensity of gravity at different
parts of the earth’s surface.

Let z be the height from which gravity makes a
body fall during the time 7', we shall have, by No. 10,
2:—g1", and consequently z==1z*.r ; we shall there-
fore have with very great precision by means of the
length of a pendulum that beats seconds, the space
through which gravity will cause bodies to fall during
the first second of their descent. From experiments
. very exactly made, it appears, that thelength of a pen-
dulum vibrating scconds is the same, whatever may be
the substances which are made -to oscillate : from
which it results that gravity acts equally upon all
bodies, and that it tends in the same place, to impress
upon them the same velocity in the same time.

12. The isochronism ofthe oscillations of 2 pendulum
being only an approximation, it is interesting to. know
the curve upon which an heavy body ought to move,
to arrive at the same time upon the point where its mo-
tion ceases, whatever may be the arc which it shall de-
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scribe from the lowest point. But to solve this problem
in the most general manner, we will suppose, conform-
ably to what has place in nature, that the point moves
in a resisting medium. Let s vepresent the arc de-
scribed from the lowest point to the cuive, = the verti-
cal ahscissa reckoned from this point ; df the element
of the time, and g the gravity. The retarding force
along the arc of the curve will be, first, the gravity re-

e dz
solved along the arc ds, which becomes equal to &5,

secondly, the resistance of the medium, which we shall
(F
express by o. (’ v) (dt) being the velocity of the

moving body, and @'((ﬁ) being any function what-

ever of this velocity. The differential of this velocity

willbe, by No. 7, equal to ——g.g—j—@ (Z—:) ; we shall

therefore have by making df constant

=71 +g. ds+ o (7 )

Let us suppose ¢. (“) dt +n dt?-’ and s——x}/(:'),

if we denote by </ (¢/) the diffcrential of J (s') divided
by ds’, and by 4" (s') that of 3/ (s’) divided by ds’y we
shall have

ds

E—t:
ds d*§ d s
= Vv (s) -l—-dt, VUGS
and the equation () will become"

0— B¢, d¢ ﬂf{¢"(s’)+n{~lx’(ﬂ)}‘}+

(1_-9. Y(s"),

= @ T e Vi)

O s D
amyE (G
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we shall cause the term multiplied by d to disappear

by means of the equation
0:41”(.&")—-!—77. r\l’,(s’)J2§ *
this equation gives by integration
JL(sN=log { h. (s’-}-q)%}*::s,

kand ¢ being constant quantitics. If we make s’ to
commence with s, we shall have hgi=1, and if, for
greater simplicity, we make A=—1, we bhall have

s'=—cn—1 ;
¢ being the number, the hyperbolical logarithm of
which is unity : the differential equation (/) then be-
comes

dzs!

ds' dz
0——d—t?_-|-— t—-[-nzg.ﬂ.( 145"y

* The integral of 0—="(s')+n.[1/(s')]> may be readily
found, by substituting for "(s), and 4/ (s') their values ;

the equation then becomes 0— izi——-d?s’ + nds, that by in=
ds ds

tegration gives h.log.ds—h.log.ds' 4-ns—e, or h. log. g—;
¥
ns

. . c .
——e—ns, from which we may obtain ds'— —.. ds, ¢ being
C

the number whose hyperbolical logarithm is unity ; the inte.
NS €

, whichgives h. log.(n.
n

gral of this equation is §' 4-g—
3
(5 +q))=ns—e, or h. log.{n.(s' +¢) ;"+ —‘s ¥ lf- ==he

h v ks’
log.;z-;:_-, then hyp. log. {A(s'+¢) g_s.
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By supposing s’ very small, we may develope the last
term of this equation in an ascending scries, with re-
spect to the powers of s/, which will be of this form,
ks'4-Is"4-&c., i being greater than unity ; the last
equation then becomes

dzs' dstoniy 7

0:(5,-‘—{'7)1 .d—t—[—l\s H1s"+-&e.
This equation being multiplied by
mt ¥

¢ 7 .{cos. vl 4/ [.sin.yt},

and afterwards integrated, supposing ¢ equal to

\/l; — ™ will be changed into
4

__7,‘/?1). s'%_—_——l./‘s" dt. c’”r;‘t {cos. oy t -

v — Lsin.yt }—&c.
By comparing separately, the real and the imaginary

parts, we shall have two equations, by means of which
/

d—st may be extracted; but here it will be sufficient for

us to consider the following
‘mt ¢!

4 me m .
e * i sin, 7t+cT.s’. g —2—.sm.yt—7.couyt % =
AR L,
— L. [s"dt.c 5 sin.pt—&c. 3

the integrals of the second member being supposed te
commence with . Naming T the value of ¢ at the
ds

end of the motion, when‘—i—-t is nothing ; we shall have

at that instant
ZI‘_Z m ., F m ¢
CEERRY % —2—.sm.-yT—- 'y.cos.fyTg =l sf.dt.e.
sin.ot—=&c. :
K
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In the case of s being indefinitely small, the second
member of the equation will be reduced to nothing
when compared with the first, and we shall bave

m .
O0— E—.sm.ryT—-«y’.cos.yT;

from which we may obtain

2y
tang .y T—=—;
alls Y n 2

and as the time T is, by the supposition, independent
of the arc passed over, this value of the tang.yT has
place for any arc whatever, which will give for any
value of &'

O—L.fs".dt. 5 .sin.yt-Se.

the integral being taken from =0, to (=T.
By supposing s’ very small, this equation will be re-
duced to its first term, and it can only be satisfied by

f 3
making /=0 ; for the factor casin. vt being always

positive from ¢=0 to t—T, the preceding integral is
necessarily positive in this interval. It is not there-
fore possible to have tautochronism but on the suppo-
sition of

n*g. 3—’ (s ) =ks ;
which gives for the equation of the tautochronous
curve

gdz_—.—.—%’-{( 1—c—ns).

In a vacuum, and when the resistance is proportional
te the simple velocity, # is nothing, and this equation
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becomes gdi==ksds ; which is the equation to the
cycloid *,

1t is remarkable that the co-cfficient # of the part of
the resistance proportional to the square of the ve'ocity,
does not enter into the expression of the time 7T ; and
it is evilent by the preceding analysis, that this exa
pression will be the same, if we add to the preceding
law of the resistance, the terms

P oo+ vt

1f in general, R represcats the retarding force along the
curve, we shall have

ds
0: It_‘+ .R.

s is a function of the time ¢, and of the whole arc passed

* The cycloid is the only curve in a plane that is tautoche
ronous in a vacunm, bat this property belongs to an indefi-
nite number of curves of double cnrvature, which may be
formed by applyinz a cycloid to a vertical cylinder of any
base, without chauging the altitudes of the points of the
curve above the horizontal plane. This is evident from
considering the equation v'=—c+42¢ of No. 8, which by

ey ds? il -+
proper substitution becomes 2ﬁ:t:—ﬁgz and gives df— '

s
e ——icin | upper sign being taken if £ and s increase
c—2gz2

together, and the lower, if one increases whilst the other
decreases. From this last equation it appears, that the
value of ¢ depends upon the initial velocity and the relation
between the vertical ordinates and the arcs of the zurve If
therefore this velocity and this relation be the same, when
the curve is changed, the above equation will not be altered
any more than the law of motion which it denotes.
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over, which is consequently a function of ¢ and of s.
By differentialing this last function, we shall have a
differential equation of the form

ds

di— i
¥ being a function of ¢ and s, which by the condition
of the problem ought to be nothing, when ¢ has a value
which is indeterminate and independent of the arc
passed over. Suppose for example F==S.T, § being
3 function of s alone, and 7 a function of ¢ alone ; we.
shall have

dz s dS ds dT dS d s* daT
""‘—dﬁ—T'IF:'Ei S =% aa S

but the equatlon —=8 T, gives ¢, and consequently

L

aT 5 ds i : 4
-a}—equaltoafunctlon ofm, which function we will

. ds? ds
denote by WTTR xL(-m) ;5 we sliall therefore have
d?zs ds? ) g i
s 1a i (E)i=—=

Such is the expression of the resistance which answers
to the differential equation (—— =—S8T; and it is easy te

perceive that it comprises the case of the resistance
proportional to the two first powers of the velocity
multiplied respectively by constant co-efficients.
Other differential equations would give different laws
of resistance.
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CHAP. III.

2

Of the equilibrium of a system of bodies.

15. Tue most simple case of the equilibrinm of many
bodies, is that of two material points which strike each
other with equal and directly contrary velocities ; their
mutual impenetrability evidently destroys their velo-
cities, and reduces them to a state of rest. Let us
now censider a number m of contiguous material points
disposed in a right line, and actuated by the velocity
#, in the direction of this line. Let us suppose, in like
manner, a number m’ of contiguous points, disposed
upon the same right line, and actuated by a velocity
' directly contrary to u, so that the two systems shall
strike each other. In order that they may be in cqui-
librio at the moment of the impact, there ought to bea
relation between » and #/ which it is necessary to de-
termine. y

For this purposc we shall observe that the sysiem m,
actuated by the velocity #, will reduce a single material
point to a state of equilibrium, if it be actuated by a
velocity mu in a contrary ditection; for each point in
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the system will destroy a velocity equal to « in this last
point, and consequently its m points will destroy the
entire velocity mu : we may therefore substitute for
this system a single point actuated by the velocity mu.

‘We can, in like manner, substitute for the system m’
a single point actuated by the velocity m’«’; but the
two systems being supposed {o cause equilibrium, the
two points which take their places ought in like man-
ner to do if, this requires that their velocities should be
equal ; we have therefore for the condition of the equi-
librium of the two systems mu=—m'v/".

The mass of a body is the number of 4its material
points, and the product of the mass by its velocity is
called its quantity of motion ; this is what is understood
by the force of a body in motion,

For the equilibrium of two bodies or of two systems
of points which strike each other in contrary directions,
the quantities of motion, or the opposite forces, ought
to be equal, and consequently the velocities should be
inversely as the masses.

The density of bodies depends upon the number of
material points which are contained ina given volume.
In order to have their absolute density, it would be ne-
cessary to compare their masses with that of a body
without pores; but as we know no bodies of that de-
scription, we can only speak of the relative densities of
bodies ; that is fo say, the ratio of their density to that
of a given substance. It is evident that the mass is in
the ratio of the magnitude and the density, by naming
M the mass of the body, U its magnitade, and D its
density, we shall have generally M—DU : an cqua-
tion in which it should be observed that the quantities
M, D, and U express a certain relation to the unities
of their species.



\

LAPLACE’S MECHANICS. 41

What we have said, ison the supposition that bodies
are composed of similar material poiats, and that they
differ only by the respective positions of these points.
But as the nature of bodies is nnknown, this hypo-
thesis is at least precarious ; and it is possible that there
may be essential differences between their ultimate pars
ticles. Iappily the truth of this hypothesis is of no
consequence to the science of mechanics, and we may
make use of it without fearing any error, provided
that by similar material points, we understand points
which by striking each other with cqual and opposite
velocities, mutually produce equilibrium whatever may
be their nature.

14. T'wo material points of which the masses are m
and m’, cannot act upon each otlier but along the line
that joius them. In fact, if the two points are con-.
nected by a thread which passes over a fixed pulley,
their reciprocal action cannot be dirccted along this line.
But the fixed pulley may be considered as having at
its centre a mass of infinite density, which re-acts upon
the two bodies m and m/, whose action upon each other
may be considered as indirect.

Let p denote the action which m exercises upon m/,
by the means of a straight line inflexible and without
mass, which is supposed to unite the two points.  Con«
ceive this line to be actnated by two equal and opposite
forces p and —p, the force —p will destroy in the body
m a force equal to p, and the force p of the right line
will be communicated entirely {o the body m’. This
loss of force in m, occasioned by its action upon m/, is
what is called the re-action of m'; thus in ithe commu-
nication of motious, the re-action is always equal and
gontrary {o the action. Item ebservation it appears
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that this principle bas place in 2ll the forces of na-
ture.

Let us suppose two heavy bodies m and m/ attached
to the extremitics of an horizontal right line inflexible
and without mass, which can turn freely about one of
its points.

To conceive the action of the bodies upon each other
when they produce the state of equilibrinm, it is neces-
sary to suppose an indefinitely small bend in the right
line at its fixed point ; we shall then have two right
lines making at this point an angle, which differs from
two rightangles by an indefinitely small quantity w. Let
S and f/ represent the distances m and m’ from this
fixed point: by vesolving the weight of m into two
forces, one acting upon the fixed point, and the other
dircected towards m’ : this last force will be represented
by 13_(‘5 ﬂ‘Lf 3

g being the force of gravily *. The

* Let mCm' (fig. 8,) represent the lever, which is sup-
posed to be bent from the horizontal right line mCn at C, so
that the angle m'Cn—w, then mC—f,m'C=f", the line m'n
perpendicular to the line mC continned —wf’ nearly, and
the line mm' joiniog the bodies m and m' —=f+4-f' nearly.
Complete the rectangular parallelogram mnm'o, and suppose
mo or itsequal nm' torepresent the weight of m ; this force
may be resclved into two others, represented in quantity
and direction by the lines mm' and m' o0 ; we shall then have
moz—=nm' (uf') to mm'(f+f'), as mg (the weight of m)
me(f+f")

wft

is to ~=< or the force with which m acts upon the

body m'. - The force with which #/ acts wpon m may be
found in a similar manoer.
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actionof m/ upon m will in like manner be- g(f}}-—f 2
by equalling thesc two forces, in consequence of their
equilibriom, we shall have mf—=—m/f’; this gives the
known law of the equilibrium of the lever, and at the
same time cnables us to conceive the reciprocal aetion
of parallel forces.

Let us now consider the equilibrium of a systenr of
points m, m’, m”, &c. solicited by any forces whatever,
and re-acting upon cach other. Let fbe the distance
of m from m’; f' the distance of m from m"; and f/
tke distance of wi’ from m'”, &e.; again, let p be the
reciprocal action of m upon =’ ; p’ that of m upon m’ :
p"that of m’ upon m” &c., lastly, let mS,m’'S",m"S",&.
be the forces which solicit m, m’; m/, &c. ; and s, s*,
sy &e. the right lines drawn from their origins unto the
bodies m, m'y, m", &c. :

This being agreed upon, the point m may be con-
sidered as perfectly free and in equilibrio, in conse-
quence of the force mS, and the forces which the bodies
mym',m", &c. communicate to it : but if it were sub-
jected to move npon a surface or a curve, it would be
necessary to add the re-action of the surface or of the
carve to these forces. Let 3s be the variation of s, and
let 3, f denote the variation of f'taken by regarding m’ as
fixed. Denoting in like manner, by 3, f/, the \'a}iation
of f' ,taken by regarding " as fixed, &c. Let R and
R’ represent the .re-actions of two surfaces, which
form by their intersection the curve upon which the
point  is forced to move, and 3r, 3r' the variations of
the directions of these last forces. The equation (d)
of No, 3, will give
O==m.83s4-p.3,f4p' 3 f'+&c. . . . . RI¥IrR.3.

L
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In like manner, m’ may be considered as a point
which is perfectly free and in equilibrio, in consequence
of the force m’S’, of the actions of the bodies nr, m?,
&c., and of the re-actions of the surfaces upon which
it is obliged to move ; which re-actions we shall denote
by R"and R, Let s’ be therefore the variation of
s'5 3, fthe variation of f, taken by regarding m as
fixed 5 3, the variation of £/, taken by regarding m’
as fixed, &c. Moreover let 37 and o be the varia-
tions of the directions of B and K" ; the equilibrium
of m! will give
0—=m'S' 3s'+p.3, f+p"3,f '+&c. . R 34 RIor™,

If we form similar equations relative to the equilib-
rium of m”, m", &c. ; by adding them together and
observing that *

M= 0f 5 A=A 5 e

* The ninth diagram will serve to render this more evi.
dent, Suppose that the line joining the bodies m and m' is
, represented by f; that the point m' being immoveable, the
puint m passes over the indefinitely small space mn. Join
nm' from the point z let fall the perpendicular na upon the
line mm', then ma will represent the projection of the line
mn upon the line mm', see notes No. 2, and we shall have
ma—mm'(f)—am', but—a-r_r-z’_z_:;z—’;ﬂ——;zzﬁ, and as 7a? is an
indefinitely small quantity of the second order, it may be
neglected, therefore am'—nm' nearly, consequently ma—
mm' (f) — nm'=3 f. ~ Again_ let m' be supposed to pass
over the indefinitely short space m’a’, whilst m remains im-
moveable, join mn', then mm'— mn'==3, f. If m and m' be
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f, 3f !, &ec. being the whole variations of f, f', &ec.
we shall have

0—3.m.S.3s+Z.p 2. R, (F)
an equation in which the variations of the co-ordinates
of the different bodies of the system are entirely arbi-
trary. It should here be observed that instead of
m.S.3s, it is possible in consequence of the equation
(a) of No. 2, to substitute the sum of the products of
all the partial forces by which m is actuated, multiplied
by the variations of their respective directions. It is
the same with the products m'S".3s', m"S".3s", &c.

If the bodies m, m’, m", &c. are invariably connected
with each other, the distances f,f/, f”, &ec. will be con-
stant, and weshall have for the condition of the conncc-
tion of the partsof the system ,3/=—0,3f '—0,3f "—0,&e¢.
The variations of the co-ordinates in the equation ' (%)
being arbitrary, we may subject them to satisfy these
Iast equations, and then the forces p, p', p”, &e. which
depend upon the reciprocal action of the bodies of the
system, will disappear from this equation : we can also
cause the terms R.5r, R'.57, &c. to disappear, by sub-
jecting the variations of the co-ordinates to satisfy the
equations of the surfaces upon which the bodies are
forced to move, the equation (k) thus becomes

OB e S e
from which it follows, that in the case of equilibrjum,
the sum of the ‘variations of the products of the forces

supposed to vary at the same time, and move refpectively to
nand 7', let n and ' be joined, then we shall have mm!'—
nn'=Y=3 f43,f, by neglecting indefinitely small quantities
of higher orders than the first.
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by the elements of their directions is nothing, in what-
ever manner we make the position of the system to
vary, provided that the «conditions of the cornection of
its iparts be ebserved.

This theorem which we have obtained on the parti-
cular supposition of a system of bodies invariably con-
nected together, is general, whatever may be the con-
ditions ofthe connection of the parts of the system. To
demonstrate this, it is sufficient to shew, that by sub-
jecting the variations of the co-ordinates to these con-
ditions, we shall have in the equation (k)

O=Z.p3f+-2.Rar ;
but it is evident that 3r, 3, &c. are nothing, in con-
sequence of thesc conditions ; it is therefore only rc-
quired to prove that we have 0===2.p.3f, by subjecting
the variations ofithe co-ordinates to the same conditions.

Let us imagine the system to be acted upon by the sole
forces p, p'y p”, &c. and let us suppose that the bodies
are obliged to move upon the curves which they would
describe in consequence of the same conditions. Then
these forces may be resolved into others, one part ¢,
q's 9", &c. directed along the lines f, f/, f*, &c. which
would mutually destroy each other, without producing
- any action upon the curves described ; another part T,
T', T", &c. perpendiculars to the curves described,
lastly, the remaining part tangents to these curves, in
consequence of which the system will be moved*. But

#* In (fig. 10) where only two bodies m and m’are con-
sidered, mm' is/the line joining the bodies, 4mB the curve
upon which m is forced to remain, mp the force p that acts
upon m in the direction of the line mm' or f, rp or ¢ that
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it is easy to perceive that these last forces ought to be
nothing ; for the system being supposed to obey them
freely, they are not able to produce either pressure
upon the curves described, or rc-action of the bodies
upon cach other; they cannot therefore make equilib-
riwn to the forces — p, —p', —p’, &c. ¢, ¢, ¢", &c.
T, T', TY &c.; it is consequently necessary that
they should be nothing, and that the system should be
in equilibrio by means of the sole forces —p, —p/,
— p'y &c. 4,¢'59", &c. T,T',T"&c. Letdi, 3, &c.
represent the variations of the directions of the forces
T, T', &c.; we shall then have in consequence of the
equation (%)
0==.(q —p)3f+2.T3i;
but the system being supposed to be in equilibrio by
means of the sole forces ¢, ¢', &c. without any action
resulting upon the curves described ; the equation (k)
again gives 0—=2.¢.3f, which reduces the above to the
following
0—=2.p.5f —2.T.5i.
1f we subject the variations of the co-ordinates to an-
swer to the equations of the described curves, we shall
have 3i=0, $==0, &c. and the above equation be-
comes :
0=2.p.3f;
as the curves described are themselves arbitrary, and

part of it which is destroyed by the mutual action of the
the bodies without producing any effect upon the curve
AmB, mr the remaining force of p, which is resolved into
the force mT, or 1' that acts perpendicularly to the curve,
and 7' which acts in the direction of a tangent toit.
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only subjected to the conditions of the connection of
the parfs of the system ;" the preceding equation has
place, prévided that these conditions be fulfilled, and
then the'equation (£) will be changed into'the equa-
tion (). 'Thisequation isthe analytical traduction of
the following prinbiplu, Known under the name of the
principle of virtuzl velocities. :

“1f we make an indefinitely small variation in the
position'of a system of bodies, which are subjected to
the conditions that it cught to fulfil : the sum of the
forces which solicit it, each multiplied by the space
that the body to which it is applied moves along its di-
rection, should be equal to nothing in the case of the
cquilibrium of the system.” *

* The following are proofs of the truth of the principle of
virtual velocities in the cases of the lever, the inclined
plane, and the wedge.

* First, with respect to the lever ; let mCm' (fig. 11.) re-
present a straight lever in equilibrio- upon the fulcrum C, by
means of the forces S and §' acting in the respective direc.
tions of the lines mS=—s, and m'S'=s"; .if 1his lever be supa
posed to be disterbed in an indefiuitely small degree, so that
m and 7' describe the arcs mn and m'n' respectively, and
perpendiculars ne and #'d be drawn from n and »', upon
the directions of the forces & and §’/, we shall have ma—
— 35, and m'6=3s'. Let the perpendiculars Cc and Cd be
drawn to the directions of the forces S and 8’ from the ful.
crum C, then as the indefinitely small arcs mn and m's' may
be supposed rectilinear, and the angles Cmn and Cm'n’ right
angles, we shall have ang. amn—ang. mC(c, and ang. dCm'
——ang. #'m'b, aud consequently the rectangular triangles
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This equa'ion has not only place in the case of equi-
librium, but it assures its existence. Suppose that the

amn, mCc, and dCm', n' m'd respectively similar, therefore
by proportion

ma : mn : : Cc : Cm,
also

m'd : m'n 2 :Cd : Gm'

mn
which give ma="——, .Cc, and m’b—' , consequent.

ly 3.9 = — L,—”—l.Cc, and ¢ :,E,;,.Czl. Let these va.

lues of 3s and 0s' be substitated in the eguation of virtual
velocities

S.3s4-8".3s'—0

e}
Z’Z: ’g—:—,, and we shall find that S.Ce—
S'.Cd; whichis a well.known property of the lever.

In the case of the inclined plane, let the tweifth diagram
be supposed to represent a section formed by a plane passing
through the centres of gravity m and m', of two weights in
equilibrio upon two inclined planes AB and LC, which
have the common altitude BI), the weights being connected
by a string passing over the pulley P. Let the position of
the weights be changed so that their centres of gravity m and

observing that

m' may pass through the indefinitely small spaces mn and
m' n' recpectively ; from m and 0/ let the lines mS—s, and

m'S’—s' be drawn in the direction of gravity, and suppose
the weight of the body resting nupou 4B to be represented
by S and tbat of the Lody resting upon BC by S8': from n
and #/ draw the perpendiculars n¢ and n’'d respectively to
the lines mS and m'S’, or their continuations. 'Then as the
lines forming thetriangle nmaare respectively parallel to the
lines forming the triangle 4BD, the triangles are similar:

At oot
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equation (1) having place, the points m, m/ &c. take
the velocities », o/, &e. in consequence of the forces

-

for a like reason the triangles m'#n'b and BCD are similar :
we have therefore
AB : BD : : mn : ma,
BC: BD : : m'a" : m's,
BD
consequently MA=~ s 0 and m' b:g%.m' n". Ifin the

equation of virtual velocities

§.0s4-8" 05" =0,

: : BD
as ds—ma and 8s' — — m' b, their respective values—. mn

AB
BD ) ‘
and— P e substituted, we shall, as mn=—m'n’,
easily obtain the following equation S§.BC—=S".4B, which
shews that the weights have the same ratio to each other as
the lengths of the planes upon which they rest have ; this is
well known from other principles.

Lastly, in the case of the wedge, let 4BC (fig. 13), re-
present the section of a wedge, and the plane JM.N upon
which it rests in equilibrio, from the perpendicular pressures
of the forces § and §' upon its sides 4B and AC, io the di-
rections mS—s and m'S' —s' respectively. Suppose that in
consequence of an indefinitely small variatiou in the situation
of the wedge, it takes the position abe, its sides meeting the
directions of the forces or their continuations inz and 7', it
is evident that the small right lines mn and #'2' will be the
spaces passed over by the powers §' and §*,Tin their respec-
tive directions, Join Aa, and let CA and ba be prolonged
until they meet at I, and from the points 4 and a let the
perpendiculars AH and Ag be drawn to the prolongations,
then we shall evidently bave m'n'=Ga, and ma—=AH,

« N
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S, m'S!, &c. which are applied to them. The sys-
tém will be in equilibrio by means of these forces, and
the forces —mv, —m'v', &c. denoting by 3v, 3/, &e.
the variations of the directions of the new forces, we
shall have from the principle of virtual velocities
0—3.mS.3s — 2. m.030v ;

but we have by the supposition 0=—==2.mS.3s ; we shall
thercfore have 0==2.m.vdv. The variations 3v, 37/,
&c. ought to be subjected to the conditions of the sys-
tem, they may therefore be supposed equal to vd¢, v'dz,
&c. and we shall have 0—==2.mv*, which equation gives
v==0, v'==0, &c. ; therefore the system is in equilibrio
in consequence of the sole forces mS, m'S’ &c.

As the lines ok and a4 are respectively parallel to the lines
AB and BC, the triangles ABC and Fad are similar, con.
sequently b

AB : AC : : Fa : F4;
we have likewise, as the right angled triangles FaG and
FAH, by having a common angle at F, are similar,

aG : AH.: : Fa : FA4,
therefore

AB : AC : : oG : AH.
This last equation, as A H—mn=——3s and Ga—m'n' =3+,

gives 3s — —3s' 3 1f this value of Js be substituted in

Ac
AB°
the equation of virtual velocities

S.9548".55'=0

wé shall obtain the following, S.AC—=S8". 4B, which shews
that when the wedge is in equilibrio, the powers acting upon

f\— -y
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The conditions of the conncction of the parts of the
system, may at all times be reduced to certain equa-
tigns between the co-ordinates of its different bodies.
Let =0, #'==0, u"==0, &c. be these different equa-
tions, we shall be enabled by No. 8, to add to the
equation () the function A.Du~-0".du/'-a Sul4-&ec.,
or S.adu; A, 2, 27, &c. being indeterminate functions
of the co-ordinates of the bodies; the cqhation will
then become - .

0=—=Z.m.8.5s4-Z.A0u ;

in thig case'the variations of all the co-ordinates are
arbitrary, and we may equal their co-efiicients to no-
thing ; which will zive so many equations, by means
of which we can determine the functions 2, A’ &c.  If
we lastly compare this equation with the equation (k)
e shall have

SAdu=Z.p3f+Z. R ;

from which it will be easy to find the reciprocal actions
of the bodies m, m', &c. and the pressures — 2, — R,
&c. that they exercise against the surfaces on which
they are forced to remain *.

it are to each other as the sides of the wedge to which they
are applied, which is 2 well known property of it.

The principle of virtual velocities may readily be proved
in the cases of the wheel and axle, the pulley, the screw, &c.
and holds good in every case of machinery in equilibrio,

# The following examples, extracted from the Mechanique
Analytique of Lagrange, will serve to shew the facility with
which the principle of virtual velocities may be applied to
the solution of various problems.

!
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15. 1f all the bodies of a system are firmly attached
together, its position may be determined by those of

It may heie be premised, that the fo;c-es_ which act upon
any point or body will be supposed to be reduced to three,
P, Q, and R, acting respectively in the directions of the
co-ordinates x, y, and =z, and tending to diminish them.
The quantities belonging to the different Dodies will be dis-
tinguished by ome, two, three &c. marks accordiog to the
order in which they are considered. “Thus:the sum of the
moments of the forces which act upon the bodies will be
Plr4+Q0y+R.3:4-P d32' Q' .3y 4R .5z + P' 32" &ec.
To this must be added, the differentials of the equations of
condition, each multiplied by an indeterminate quantity.

Let us first consider the problem of three bodies firmly at.
- tached to an inextensible thread. In this case, the condi-
tions of the problem are, that the distances between the first
aud second, and between the second and third bodies, will
be invariable ; these distances being the lengths of the por-
tions of the thread intercepted between them. Let f be the
first of these distances, and g the second, we shall then have
3f==0, and 3g—0, for thc equations of condition, therefore
su==3f and du' =)g, and the general equatiou of equilibrinm
will become

Plx4-Q3y+R.Iz 4+ PO+ Q Sy 4R 32 +P'32"4-Q.
W' RS2 ASu 4 A Su'=0.
The values of fand g are
I=V (=) (Y =y )+ (F—2)*},
e=V (&= ) (' —y' )+ (F2)%),
therefore 4 }
3f =00 —30) + (') Of =) +(F—) (3 =32)
— f 14 '

..
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three of its points which are not in the same right line ;
the position of each of its points depends upon three

(.z‘ —a') (D' =3x") 4-(y' ") By 3y’ ) + ("= ) (32"—d2' )
g

these values being substituted will give the nine following
equations for the conditions of the equilibrium of the thread,

at'—
P—a. w—'o,
Q_A..‘yi__-.'.y:(),
» u,
L
R—Z"Z—o,
ez d—a
Pa. T e =0
A y'_y__ [ y"—-—y’_
Q" +A. . A, " =05
R’+A."—_:f—-7~ z’_”—_—_o,
PI4-x .-Z" =0,

yu_‘y'
Q'+, s :O,~

£ an il
i [P I
R4 Pt —0.

It now remains to_eliminate the two indeterminate quanti.
ties o and A’ from these equations, which may be done vari-

v
4
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co-ordinates, this produces nine indeterminate quan-
tities ; but the mutual distances of three points being

ous ways, each of which will give equations, either different,
or presented differently, for the equilibrium of the three
bodies.

It is evident that if we add the three first equations to the
three next, and to the three last, we shall obtain the three
following equations delivered from the unknown quantities
aanda'. ;

P} P 4 P—0,
Q+Q +Q'=o0,
R4+ R +R'=0,

which shew, that the sum of all the forces parallel to each of
the three axes of z, y, and z, should be nothing.

There now remains four more equations which it is ne.
cessary to discover ; for this purpose, if the three middle
equations are respectively added to the three last, the three
following will be obtained, which do not contaiy a'.

A
P +P”+;.(x’-—x):0,
A
Q +Q"+ 5 (s —p)=03
R +RII+& (,l —“’)""'0" V3
W WS
by the extraction of a, the two following will e obtained.

Q@' —L =2 p 4 pry—o,

& —z
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given and invariable, we are enabled by their means
to reduce these indeterminates to six others, which

R 4-R'—S =P 4 P")==0,

Lastly, considering the three final equations, by extracting
A’ from them, we shall have the two following,

I ()

i
Q'— =5 P'—=0,

i !
<

—_——
=

R'— o Py

These seven equations contain the conditions necessary for
the equilibrium of three bodies, and when joined to the given
equations of condition « and %', will be sufficient for deter
mining the position of each of them in space.

If an inextensible thread be charged with four bodies,
acted upon respectively by the forces P, Q, R ; I, @, R';
P, Q", R", &c. in the directions of the three axes of 2, y,
and z ; we shall find by similar proceedings, tbe nine follow.
ing equations for the equilibrium of these four bodies,

P-[-P'—'—P“ + Plll =0,
Q+Q+Q'+Q"=o0,

. R+R4-R'4+R"=o0,

y—y 7 o
Q’ + Q"+Q"’_ x’—-x(P’_*_Pl + P"I)-_e,
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wubstituted in the equation (), will introduce six ar-
bitrary variations ; by equalling their co-eflicients to

ol
R+R'+ R — ;,—;( P3P AE P )=0’

/ e
Q" +Q"— i"...i’ (P4 P")=0,

~-"~

R4 R"— ____( P'4-P")=—o0,

Q'— Ji i .y”. P'"—=o0,

P
R"— 2 P"—o0.

2 z! i

It would be easy to extend this solution to any number

of Dbodies, or to the case of the funicular or catenarian
curve.

The solution would have been in some respects simplified,
if the invariability of the distances f g, &c. had been direct-
ly introduced into the calculation,

Thus, confining ourselves to the case of three bodies, and
denoting by and {/ the angles which the lines f and g
make with the plane of z and 7 ; and by ¢ and ¢’ the angles

which the projections of the same lines upon the same plane
make with the axis of &, we shall have

&' —x=f.c08.¢.cos.; y'—y=—Ff.sin.p.cos.y: '—zx—F.sin.;
7

&'—a'—=g.cos.¢'.co8.y'; y'—y'=g.sin.¢'.cos.'; ¥'—r'—g.

sin.J/,

Substituting the values of ', y/, 2/, 2, », and 2" obtained
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nothing, we shall have six eguations that will contain
all the conditions of the equilibrium of the system ; let
us proceed to develope these equations.

from these equations, in the general formula of the equilib-
rium of three bodies

P24 Q.3y+R.3s+ P+ Q3 + R34 PU.3" 4 Q"5
R3-S0

and simply causing the quantities x; y, 2, ¢, ¢', 1, 4/, whose
variations will remain indeferminate, to vary, and equalling
separately to nothing the quantities multiplied by each of
these variations, we shall have the seven equations

P+ P4 P'—o0,
Q+Q'+ Q":O,
R4-R'+R'—0,
(P +P")sinig—~(Q 4@ )cos.0=—0,
Psin.¢'—Q"cos.¢'=0,
(P'4P" Jeos.p.sin L--(Q +Q" Jsin.p.sinV—( R/
R")cos.}=0,
Plcos.¢’.sin.d' + Q'sin.¢'sin.J/—R'cosd' =0,
sf which the five first coincide with those found before im
ﬂie questiont of three bodies connected by an inextensible
thread, by the elimination of the indeterminate quantities a
and 2'; and the two last are readily reduced by eliminating
@ 41d Q', by means of the fourth and fifth equations:
5oy q
But if by this means we have more readily obtained the

final equations, it is because we have employed a preliminary
tranformatien of the variables which contains the equations
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For this purposeyif x, 7, s be the co-ordinates of m ;
«'y oy 2 those of m!; &7, y", 3" those of m/, &c. we
shall have

~ of condition, instead of immediately employing the equations
with indeterminate co-efficients as before, so that the equa.
tiou is reduced to’a pure mechanism of calculation. More-
over, we have by these co-efficients the value of the forces
which the rods f and g ought to sustain from their resistance
to extension, as will be shewn hereafter.

If, the first body is supposed to he fixed, the differentials
dx, 3y, and 3z vanish, aud the terms affected by these differ.
entials, will disappear of themselves from the‘general equa-
tion of equilibrinm.  In this case, the three first equations

P—a.

‘ gl

x—_—O, Q—A.y——_—_‘g:O, and R-—-A.E:"_—.O, will
© 2% ©
not have place, therefore the equations, P4 P-4 P&,
=0, Q+Q@' +Q"4&c.=0, R+R' 4R"+&c.—0, will not
have place, but all the others will remain the same. Ia this
case, the thread is supposed to be fixed at one of its ex.
tremities. .

If the two ends of the thread be fixed, we shall have not
only dx=—0, dy—0, 3:=0, but also d2"'&c.=—0, Jy"'&c.—0,
3‘:’/’&0-20‘%; and the terms affected by these six differentials,
in the "general equation of equilibrium, will consequently
disappear, as well as the six particular equations which de-
pend upon them. >

Ingeneral, if the two extremities of a thread are not en.
tirely free, but attached to points which move after a given
law ; this law expressed analytically, will give one or more
equations between'the differentials 3z, 3y, and 83, which re.
late to the first body, and the differentials da/&e., 3yll&c.
33//&e. which relate to the last; and it will be necessary to
add these equations, each multiplied by a new indeterminate

N
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f:‘/(dfl——x)z—{—(y’-—y)’_*_(zl__z)z 5
f':t/(-Z'"—x)’+(y”—y)2+(z’/—

f”=1/ ( i — .z‘)’—}— (y’” —y )’—}-(z’”—-—z )
&c.

co-efficient, to the general equation of equilibrium found
above ; or to substitute in the general equation, the value
of one ormore of these differentials obtained from the above
equatious, and lastly to equal to nothing, the co-efficient of
each that remains. As this is not attended with any diffi-
culty, we shall omit it.

In order to discover the forces which arise from the re-
action of the thread upon the different bodies, we will, in
the present case, consider the equations

Su=Y= (#'—2) 3¢ —3x) (') (O —¥y) + (3'=2) (3x'3=)

s
(@) O3 (Y O =Yy ) (=) ' )
g

Su=—=dg—
&c.
With respect to the first body whose co-ordinates are z, y,

&—zx du y—y Su 2—z
_T’ é—;_y:——j—" ande;:-— f H

we shall therefore have

v 1)+ ()G =

V(@) (' —y )+ (¥—2) _

7 =
"Therefore the first body will be acted upon by the other
bodies with a force a, the direction of which is perpendi-
cular to the surface represented by the equation du=—3f—0,
supposing the quantities #, g, and z to vary ; but it is evi-
dent that this surface is that of a sphere, having f for
its radius, and «', ', and 2’ for the co.ordinates of its centre,

and z, Z—Z:: i
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If we suppose
dr—=3r'—dr"—&¢.
dy=—=0y'—=dy"—=8&c. ;

dz—=dz—iz'—=C&c. ;

consequently the force A will be directed along this same
radius, that is, along the thread which joins the first and
second bodies.
With respect to the second body whose co.ordinates are
%'y y'y ¥y we have
du_a'—x du_y—y du_d—z

TN T WY O g

therefore
§ (v} du)2 du\z
vV i@+ )=
V(=2 + (=) +E =)
j .
from which it follows, that the second body will also receive
a force A directed perpendicular to the surface whose equa-
tion is' Ju—3f—0, supposing «/, 3, and &’ alone to vary.
This surface is that of a sphere, having f for its radius, the
co-ordinates x, y, and 2 of the first body corresponding to
its centre ; consequently the force that acts upon the second
body, will be also directed along the thread f, which joins
this body to the first, :
With respect to thesecond body, we also have

! PR W) Y=y ol

R W
therefore

2

V) @)1=

Tl'l_e_sé.&:oﬁd body will therefore be acted upon by a force
squal to A, the direction of which will be perpendicular {6
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we shall have 3f=0, 3f'==0, 3f"=—=0 &c.; the.neces-
sary conditions will therefore be fulfilled, and in con-

the surface represented by the equation 3#'—0, by making
'y y'y and 2 to vary., This surface is spherical, having g
for its radius ; therefore the direction of the force A’ will be
along this radius, that is, along the line which joins the se-
cond and third bodies.

Similar conclusions may he drawn with respect to the other
bodies.

It is evident that the force A which acts upoan the first
body, along the direction of the thread which joins it to the
next, and the equal but directly contrary force A, which acts
upon the second body along the direction of the same
thread, are merely the forces resulting from the re-action of
this thread upon the two bodies, that is, from the tension of
that portion of the thread which is included between the
first and second bodies ; therefore the co-efficieut A will ex-
press the force of this tension. In like manner, the co-effi-
cient A’ will express the tension of that part of the thread
which is intercepted between the second and third bodies,
and so on with the rest.

It has been supposed in the solution of this problem, that
each portion of the thread was not only inextensible, but
likewise incompressible, so that italways preserved the same
length, consequently the forces A, A'; &c. only express the
tensions when they are positive, and their actions incline
the bodies towards eachother ; butif they are negative, and
tend to make them separate to a greater distance from each
other, (they rather express the resistances which the thread
opposes to the hodies by means of its stiffness or incom-
pressibility.

To confirm what has been demonstrated, and at the same
time to give a new application of these methods, we will sup-.
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sequence of the equation (?) the following may be
obtained - :

pose that the thread to which the bodies are attached is elastic,
and susceptible of extension and contraction, and that F, G,
&c. are the forces of contraction of the portionsf, g, &c. of
the thread intercepted between the first and the second bodies,
and between the second and the third &ec.

Itis evident from what has preceded, that the forces F,G,
&c. will give the moments F.3f +G.8g4-&c. or A.u-fA! 3/
+ &ec.

It is therefore necessary to add these moments to those
which arise from the action of the forces which are repre.
sented by the formulaP.5»4+Q.3y+ R.3x4 P .02/ Q.3+
R3¢+ P'.32"4&c. ; and as there are no other particular
conditions to fulfit relative to the situation of the bodies,
the general equation of equilibrium will be as follows P.dw

+Q.5y+ R.3:4-P' 37 4-Q 3y + R'.33' + P 32"+ &c.-a.
u4-A . Su'4+ &e.——0.

By substitutiug the values of 3f, 3¢, &c. found above, and
equalling to nothing the sum of the terms affected by each of
the differentials 3x, 3y, &c. we shall have the following equa.
tions for the equilibrinm of the thread in the present case,

F(d—
F(y'—

Q— (yf y)___o,
F(z—z)

R— ——=—0; »

S
. F(d—=z) G(2'—2')
P _ S
o ¥ g 1

Fro— | Gly'— o
Q4+ (yf .’/)__ (.yg .1/):0,

@
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0—=.mS. (E—f), Ozz.ms.(;—;); 0—3.mS.

(s ‘); (m)

F‘(z’-—- 3) G("—2')
- g

R} =0,

n__t
P4 ___G(a:g ‘""’J):o,
G(y'—
Q'+ (yg y)zo’
R"+ Grd'—=! )__O.

These equations are analogous to those of the case in which
the thread is inextensible, and give by comparison A—F,
=G, &c.

It therefore appears that the quantities F, G, &c. which
here express the forces of threads supposed elastic, are the
same as those which have been found before to express the
forces of the same threads; on the supposition that they were
inextensible.

Let us resume the case of an inextensible thread charged
with three bodies, supposing at the same time that the second
body is moveable long the thread ; in this case the condi-
tion of the problem will be, that the sum of the distances be-
tween the firstand second bodies, and between the second and
third is constant: denoting as before, by f and g, these
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which are three of the six equations that contain the
conditions of the equilibrium of the system. The se-

distances, we shall have f+¢ equal to a constant quantity,
and consequently 3f3g—0.

In this case 3f+3g—>3%u, and consequently A(3f4-dg) or
adu must be added to the general equation of equilibrium,
which will become

Pix+Q.3y+R.3x+ P37 +Q’.8J‘+ B3+ P32+ Q3"
+R".33"+ a.8u—0.

If the values of 3f and 3¢ are substituted, and the sum of the
terms which are multiplied by the differentials 3z, 3y, &c.
equalled to nothing, the following equations, which are suf.
ficient for the equilibrium of the thread, will be obtained,

P22 ,-f_ =0,
Q—A.%1y=0,
BR—-. z;’_o,
PR ey
P'4a ( 7 «TH 2750 =

Q@ (gifly- J-"%y-'):o,

2= g »
.R'+5\(fz— % z):O,
£

=0,

X
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cond members of these equations are the sums of the
forces of the system resolved parallel to the three axes

Q” + A .7/""'17/

=0,

—2

z"
R'4-a. =0,

It is only necessary to extract the indeterminale quantity A
from these equations.

From the above examples it is easy to perceive how we may
extend the question to a greater number of bodies, of which
the end ones may be supposed fixed, and the others moveable
along the thread.

Let us now suppose that the three bodies are united by in-
flexible rods, and obliged always to remain at the same dis-
tance from each other; in this case, if & be supposed to
denote the distance between the first and third bodles, we
shall have 3f—0, g==0, and 34==0; consequently by having
three indeterminate co-efficients, the general equation of
equilibrium will become

Pix+QIy+Rds+1.8r + Q' .3y R34 P! 3/ +
Q3" R 3 -A Su 2 3u' A3 =0,

'The values of 3f, and 3g, or 3% and 34/ have been given he.
fore ; that of 34, as
e e s e P Gl
will be
s (H—) O —30) 0 )y, 4 (') (O —-32)

R h
By making these substitutions, and equalling to nothing the
sum of the terms affected by each of the differentials dz, dy,
&c. we shall obtain the nine following particular equations
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z, y,and z: cach of which sums shonld be equal to
nothing in the case of equilibrium.

P—a —a, E =0
QY=Y =4,
TRV,
d—z 2" i
S ____;\H. e
s N h %
1
P4 ‘-"l—'j—_l’ S
. g
@y L=t _n VY
i
R/4n, —— —a!. “—m—0,
' —a a'—a
P +)‘I. +,\n { :O,
g h
s B y N y__ d
Q42 + A =05
Illl_l_}\l. zl 7%, +)\II ":’J' el z__O.
g BT T

It will be necessary to extract from them the three unknown
indeterminate quantities A, A, and A"y by which means six
equations will be obtained to determine the conditions of
equilibrium.

It is evident from the form of these equations, that by add.
ing respectively the three fisst to the three next, and after-
wards to the three last, the three following equations will be
obtained, which are free from the quantities A, A', and 2",

P+P 4 P'—0,
Q+Q 4+Q'=0,
R+ R 4+ R'=0.

Is would he very easy to find three other equations by the
0
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The equations 3f=0, 3f'—0, 3f /=0, &c. will be
also satisfied, if we suppose z, 2/, 3/, &c. invariable
quantities, and if we make

extraction of 2, &', and A" ; but this may be done in a much
readier and more general manner, by deducing these nine
equations from those given above.
J {4 " Jr
YL =0y 1. Y
P _Qx_l, - —_A
24 J h
2o —a2! 2o — 2!
Pz—Rax—na. -, =0,

7 7

2y —yz! 2y —y2"
r— Ry—Aa. Jf'j e Upen h'y =0,

-

=0,

i 1t I l!
Py @t Yy’ — zy - o -l ailir
. ® TR
£
w2 ot Wlan M 1ol
' —as gla''— 2’z
Py—R 4. -, =0,
J g
! a ool A
W—yy . 2y
£ &K
Pl gl g —ay"
P”y”——Q”w”-l—"’-'y 5 4 427, ¢ A A =04
5 .

of Ll e Dia ) kg

Pl — R34, . +Al ——=0,

QY—Rly 4. 0,

"

o
Q"Y' —R"y A Y

A y'z"+ @ y'— yz"—o.
g h

These equations are evideutly analogous to the primitive
ones, and give in the same manner, by addition, the three
following equations, _

Py—Qu+4P'y—Q'a 4 Ply'—Q" 2 =0,

Pr—Rx+ P 2'—=R'a! 4Pz —R2"—0,

Qs:—Ry+Q% —R'y' + Q='— Ry —0.



LAPLACE’S MECH ANICS. 99

M=y ; Sy=—=—wa.3m
drl—y' 0w ; Syf—=—=u'3w ;
&ec. &c.

'The three first equations shew, that the sum of the forces
parallel to each of the three axes shovld be nothing, and the
three last contain the known principle of moments (under-
standing by that term the product of the power by its dis-
tance, as in the case of the lever),from which it appears,
that the sum of the moments of all the forces to make the
system turn about each of the three axes, is likewise uothing.

If the first body be fixed, the differentials 3z, dy, and dz
will vanish, and the three first of the nine equations first
given will not have place; we shall in this case have only six
equations, which by the extraction of the three indeter-
minates A, 2’, aud a'’; may be reduced to three.

In order to obtain these three equations we may proce ed
in a manner analogous to that made use of to discover the
three last equations of the preceding question; provided
we take care that the transformed ones do not contain the in-
determinates A, and A", which enter into the three first, of
which it is necessary to make abstraction. This will be ob-
tained by the following combinations,

Py _y)__Qr(xl__x)__;\/(.y"y)("L"—x’)';(1""")(3/”’—[’/):0

—3)(a—a')— (&' =) (+/— )
- 0,

b

N
Pl(:l___z)__ R,’(J-" ___1,)___7\1. ("'

o

Q (z’-z)——R’(y’-;y)—-;J, G = =)= =) (")

& TS
- !y (27—
; l)ll(yu_y)_Q!l(xll__x)+?J(‘y :7/)(1.// ') ’r(x‘” x’)(.y”—y’):o,
2
1‘”(:”-—-2’.)‘R//(JZ/’—I)+A’.(:/{~3)(x”-x,); (‘x//__x) (:ll__:!)::o,

S
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3@ being any varialion whatever. By substituting
these values in the equation (), we shall have

0=3.mS. %y. ;—E)— Jc(g?j) % 3

QI(x" =) —RI(y'—y) + N (="—2)(y" -—.y’);(y”—y)(:” —2')
If we add the three first of these equations to the three last,
the three following will be obtained, i

Py —y)—Q/(2'—z) + PI(yl—y )— QI (" —x)=0,

P (2'—2z)—R/(a'—x) + Pl (2V—z)—R"(a"—x )=0,

Q'(v'—z)— RI(y'—y) +QV(z"—z)—RI(y'—y )':0.
These will always have place, whatever may-be the state of
the first body, as they are independent of the cquations rela.’
tive to it. 'These equations contain the principle of mo-
ments, with respect to the axes passing through the first
body.

Let us suppose a fourth body attached to the same in.
flexible rod, havingz", ™, and 2" for its three rectangular

co-ordinates, and P", @", and R" for the three forces pa-

rallel to these co-ordinates.

It will in this case, be necessary to add the quantity
P34 Q".3y" 4+ R".33" to the sum of the moments of
the forces. As the distances between all the bodies ought
to remain constant, we shall bave by the conditions of the
problem, not only df—0, 3g=—=0, 3k=0, as in the preceding
case, but also 8/=—0, dm—0, and 32—=0 ; naming the dis-
tances of the fourth body from the three others 7, m, and =.

‘ The general egnation of equilibrium will in this case be-
come )

Por+Qa3y-+RAz+ P 3"+ Q Sy R .8 P 32" 4-
Q".5y" 4 R".35" 4 P 3a™ 4 QW 3y M + R 3o 4-2 Srg 42" e
RRULWRARVIEVINE LR SRR AN

=0;
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1t is evident that we may in this equation change either
the co-ordinates x, 2/, 2, &c. or y,y's y", &c. into

The values of 3f, 3¢, and 3%, are the same as before, and
those of 3/, 3m, and 3z, or Su, 34\, and du", as

I=y/{ (a"—5)* + (o l—y )24 (2V—2)2},
m:t/{ ({Z‘I”——m' )z+ (y’”—-y’)"-i—(z’”—;l )2},
72'-‘/{ (xlll_wll):_*__(‘}!ll_yll)z_l_ (z”/__d/)z 2

are
“u' ,/—SI (m"’—x)(h’" —om)+(/”~y)(8J”’—8y)+(~"—~)(8~"._3~)
PRIPRPNE o 22 s 3x')+(J’”—v’)( 3y"-0y") ("2 ) (32V32")
W=
m
;uv__.g (x"’-—x”)(&x”’..&x”)+(y"' _'y//)(s‘yﬂl_gj[l)+(:u/_z//) (82,”’...3;”)
—9a=

n

By making these substitutions, and equalling to nothing the
sam of the terms of each of the differentials 3z, 3y, &c., we
shall find twelve particular equations ; the nine first of which
which will be the same as those in the case of three bodies,
if the following quantities were respecuvely added to their
first members.

T A "__ 8 Dl
—M, ol e Al J_ y i 1A
Ty o A
§ 2 o A J/“’— ‘UI A zl/l_; 4
PR, ) T Y, X8
Wi, m ? Sl
R MW g ft 2 1
all— y'—y e
—AV At —AY . a3 —Af, o g s
and the three last will be +
i fil__ ! 0
" —z L xil—gx T
P +;\///_ 7 Aty — +}\v X, —0,
m n

yr—y _yl—y! o —y"
QI ¥ v = av e =0y
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3, &'y 2”5 &c. which will give two other equations that
re-united to the preceding, will form the following

e u ()= (D} )
R g () (2
s §o- 0 = ()] |

e ) gt — o

"
R +'{‘”’-z _.!_,{,xv +,{,v.————: v
n

As there are twelve equations in all, and six indeter-
minate quantities 2, A, A%, A, AV, 2Y, to eliminate, there
will only remain six final equations for the conditions of
equilibrium, as in the case of three bodies ; and we shall find_
by a method similar to one given before, these six equations
analogous to those found in that case,

P+ P+ P4 pPr—0,

Q4 Q'+ Q' Q'=0,

R+R'+4R'4-R'"—0,
Py—Qa--Ply'—Q'z' - Plyl— Q" Pyt — Qi
—0,
P:—R x+ Plg'— R x’—}— Plgt__ R x!/_}_ Prretn__ Rl
=08
Qz— Rﬂ‘i‘ Q's’—R’y’+ Qllzl/_Rllyﬂ+ Qs — R”"g/”’
=0k

Instead of the three last, the three following equations
may be substituted, which can be found by a method given
before. As they are independent of the equations relative
to the first body, they potsess the advantage of always having
place, whatewer may be the state of this body.
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the function Z.mS.y. (i—;)}is by No. g, the sum of

the moments of all the forces parallel to the axis of «,

P/(y __y) Q'(.Z"——.Z’)—{—P”(y”——:/)— ”(‘Z‘/ .Z')+
Plll(yﬂl_y) Ql/l(xlll Z’)—O

Pi(—3)—R/ (2'—x )+ P!(s"—3)—R'(z"—z )+
Py ) — RV ( g — g )=0,

Q'(5'—3)—R' (y'—y)+Q''=:)—R!(y"—)+
Q”I(S”I—-’Z) ___Rlll(ylll___!/)zo X

Let us now consider the case of three bodies joined by a
rod which is elastic at the point where the second body is
situated, the distances between it and the other bodies being
constant, but the angles which the lines form variable. Let
us suppose that the force of elasticity, which tends to augment
the angle formed by the lines which join the second body to
the two others, is represented by E, and the exterior angle,
formed by one of these sides and the prolongation of the
other, by ¢ ; then the moment of the force E ought to be re~
presented b) E.3e, or its equal 2".3u" ; therefore the sum of
the moments of all the forces of the system, as 3/=0, 3g=—0,
will be

P 3r+4-Q.5y+R.34 P 32’4 Q' 3y R ' P! .3z¥
Q1.3y "R 32" Su-t-' Su'-41 3u"=0.

It is now only required to substitute the values of du, 9",
and du’ : those of 3x and 34’ are the same as in the first
question, but with respect to that of 3’ or de, it may be
observed, that in the triangle, of which the three sides are
/5 &, and 7, or the distance of the first body from the third,
180—e is the angle opposite to the side % ; therefore by

At
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which would cause the system to revolve about the axis

of z. In like manner, the function £.mS. z. g;) is

f 2 +g2___ }L‘z
s

tion gives the value of 8¢ or Su' : as by the conditions of the

problem 3/=—0, 3g=0, it will be sufficient to make e and &

3
vary, we shall therefore have Ee:3ull_-_-_._lz_3 g

Jgsin.e

trigonometry —cos.e— ; which by differentia-

This

value being substituted in the preceding equation, it will
evidently become of the same form as the general equation
of equilibrium given in the case of three bcdies joined to-
gether by an inflexible rod ; by supposing in it that A/— —

ER :
o sin, Sy the particular equations will necessarily be the

same in the {wo cases, with this sole difference, that in the
case above mentioned, the quantity ' is indeterminate, and
consequently ought to be eliminated ; but in the prespnt
case it is known, and there are only two quantities A and &'
to eliminate, consequently there will be seven final equations
instead of six, But whether the quantity A is kuown or
not, it may be eliminated along with the two others, £ and
4’5 we shall therefore have, in the present case, the same
equations as were found in the case of three bodies at-
tached to each other by an inflexible rod : to find the
seventh equation it will only be necessary to eliminate 4
from the three first, or A/ from the three last of the nine par-
ticular equations of the above case, and to substitute for

EhR
47 it value ———r——
fgsin. e

If 3f and 3z had not been supposed to vanish in the valve
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the sum of the moments of all the forces parallel to the
axis 6fy, which would cause the system to turn about
the axis of z, but in a different direction to the first
forces ; the first of the equations (n) coasequently in-
dicates, thai the sum of the moments of the forces is

h3h
Jesin. e

A3f-DB.3g, A and B being fanctions of f, g, h, and sin. e;
in this case, the three terms A.du--2'.3u/4-2". 31@” of the ge-
neral equation, woald become (E44-2).3u+- (EB-+2")
b 17 e b1 3,‘» but 2 aud A’ being two indeterminate

jwm .

quantities, it is evident that A—FE 4 and A'—EDB may be
substituted for them, by which means the quantity treated

Eh
fe sin.e

when f and g'did not vary in the expression of Je.

If many bodies be supposed to be joined together by elastic
rods, we shall find, in the same manner, the proper equa-
tions for the equilibrinm of these bodies. The above me.
thods will always give with the same facility, the conditions
of the equilibrium of a system of bodies connected together in
any manaer, and acted upon by any exterior forces whatever,
The proceedings are always similar, which ought to be re.
garded as one of the principal advantages of this method.

The following question, and several others, are likewise
solved in the Mechanique Analytique of Lagraige. To
find the equilibriom of a thread, all the points of which
are acted upon by any forces whatever, and which is sup.
poied perfectly fiexible or inflexible, extensible or inexten.
sible, elastic or inelastic.

of 32, it would have been of this form §e — —

upon will become A.3u 4 a/,3u’ — .k, the same as

r

A r
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nothing with respect to the axis of x*. The sccond and
the third of these equations indicate in a similar man-

% 1If the system be at liberty to turn in any direction about
a point taken for the origin of the co-ordinates, the instan.
taneous rotations about the three axes, may be considered
in the following manner ; which will give threc equations of
rotation with respect to these axes, similar to those of
Laplace.

Let p represent the projection of a line drawn from the
origin of the co-ordinates to thebody m, ;' that drawn with
respect to the body m', &c., also ¢ the angle which the
line p makes with the axis of z, ¢’ that which ;' makes with
the same axis, &c. we shall have the following equations
x=—p. €0S.0y y==p. siN. @, a'='.cos. ¢/, y'=/'. sin. ¢, &c.
which by diflerentiation and substitation, if p, ¢, p" &c, be
supposed constant, will give

= — .30, y=z.3¢, d'=—y'.3¢, 3y =20, &ec.
S¢’s 3¢!, &c. being each of them supposed equal to 3p, asthe
bodies m, m', m”, &c. are imagined to be invariably con.
nected,

These variations of @, y, ', ', &c. are owing to the ele~
mentary rotation 3p about the axis of 2.

In a similar manner, if J, ', ¥, &c. represent the an.
gles which the projections upon the plane yz of lines drawn
from the centre of the co-ordinates to the bodies m, m!, m",
&c. respectively make with the axis g, the variations of g, z,.
¥’y ¥, &e. arising from the elementary rotation 3J.about the
axis of » may be obtaiced, which will give the following
equatioas,

dy—=— 2.0, Sr=y 3, Y= — 213, ="M, &e.

Likewise if «, o, o', &c. represent the angles which the
projections upon the plane xz of lines drawn from the centre
of the co-ordinates to the bodies m, m/, m'', &c. make
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ner, that the sum of the moments of the forces is no-
thing, either with respect to theaxisof y, or to the axis

with the axis z, the variations of x, 2z, &/, z/; &c., arising
from the elementary rotation dw about the axis of y, will
give
de— — 2.dw, Sr==r.dw, 8= — 2'.8w, dr'=x.dw, &c.

If the three rotations take place at the same time, the whole
variations of the co-ordioates z, y, 2, o/, 3/, 2/, &c. will be
equal to the sums of the partial variations belonging to each
of these rotations, consequently we shall have the following
equations,

Su—=2.0w — y.3¢, dy=x.3p — .04, dv—y.3) — x.3w,
Sa'=2 Ju—y'.Dp, 3y =/ Sp—=2' ¥, 8 =y S —a' Sw.
1f these values be snbstituted in the general formula of equia
librium =.8.3s—0, we shall obtain the terms belonging to
the rotations 3¢, 3w, and 3} about the the three axes of 2,
9, avd @ ; which ought to be separately equal to nothirg,
when the system has liberty to turn in any direction about a
point placed at the origin of the co-ordinates. 'The equation
=.8.55—0, by substitufion, gives the following

L3y + M3+ N.3p=0,
in which

I—=—=2.mS. % Y ;g) —_— ;—;) %,
ﬂ[:E.mS.{ 2. ;—:) —x(z—g) % "
N=—3.mS. %x z—é—j) —‘y(g—g)g

The co-efficients of the instantaneous rotations &,y Sw, and
3@, are the moments relative to the axes of these rotations,
-and are respectively equal to nothing in the case of equilib-
rium, when the system has liberty to turn abont the origin
of theco-ordinates.
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of z. By uniting these three conditions to those in

If at any point of the system the co-ordinates x, y, and =
be respectively proportional to %, 3w, and 3¢, we shall
have there

2.00=y.59, 2.0¢=2.3V, y.3l=w.du,
and consequently dx—0, 3—0, and dz=0.
This point and all others which have the same property, will
consequently be immoveable during the instant that the
system deseribes the three angles 3V, 3w, and 3¢, by turning
at the same time about the three axes of x, y and 5. It
may be easily proved that all the points which have this
property are ina right line passing through the origin of the
co-ordinates. 'The co.sines of the angles A, x, and y which
it makes with the axes of x,  and 2, are

x y =

« Vedg e Vetr e Vetyda

that by substitution will respectively become
My dw
1/(34«’-}—-3(0’—}-3(;).’)’ ‘/(84/2_*_3{”;_&_8@,) and
39
vV (W3¢ )”

‘This right line is the instantaneous axis of the composed
rotation,

If we suppose_&@:\/(Nﬂ—{-3w’+3¢=) we shall have
M=d0.cos.a, Sw=df.cos.u, p=39.cos.y,
which, by substitution in the general expressions of 3z, 3y,

and 3z, will give
32=(z.c08.u—g.C08.1)30,
dy=(x.cos.y—z.c08.2)34,
dv==(y.cos.A—w=.c05.1)30.

These values being substituted in the expression 322 3y2-

932, which is the square of the indefinitely short space passed
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L)

which the sum of the forces parallel {o these axis are

over by any point whatever, it will be changed into the
following ;
{ (zc0s. u—yc08.y)* - (xc0s.y—2C08.A) - (ycos.A—ac0s. 1) T
392 —={ a4 yA-32—(wcos . A+ 5cos. w2605, ) 1302
as cos.2a--c0s.2 + cos. =1,
It may readily be proved that zcos.A<-ycos. u--3c0s 520, is
the equation to a plane passsing through the origin of the
co-ordinates, in a direction perpendicular to the right line
which malkes the angles A, u, and v, with the axes of z, y,
and z, consequently the short space described by acy point
of this plane will be 891/‘;{——_}-—y’+z. As the axis of rota
tion is perpendicular to this plane, 89 will represent the an.
gle of rotation about it composed of the three partial velo.
cities #,dw,and 39, about the three axes of the co.ordinates.
It therefore follows, that any instantaneous rotations 4,
s, and 3¢ about three axes which cut each other at right
angles at the same point, may be composed into one d§—
Vm about an axis passing through the same
point of intersection, and making with them the angles a,

#, and », so that
N At Yk
COS.?\__s g COS.[A__E 5° COS.V_3 9°

Inversely, any rotation 30 about a given axis may be resolved
into three partial rotations, denoted by cos.r.3, cos.p..36,
and cos.y.39, about three axes, which cut each other per.
pendicularly in a poiunt of the given axis, and make with it
the angles A, 4, and y. The above enable us in-a very easy
manner to compose and to resolve the instantaneous move.
ments or velocities of rotation.

Let tiree other rectangular axes be taken which make with
the axis of rotation 34 theanglesa’,A%, and A", with the axis
of rotation 3« the angles 1/.",[/«",[6"'.’ and with the axis of rota«
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nothing with respeet to each of them ; we shall have

tion 3¢ the angles +', ¥, and s ; the rotation 3 may be
resolved into three rotations cos.x' .3¥, cos.A".3Y, and cos.
A 34 about these new axes, the rotation dw may likewise
be resolved into three rotations cos.u/.dv, cos.u’.dw, and
cos.;" 3w, and the rotation 3¢ into three rotations cos.v'.59,
cos. " g, and cos.r”'.2¢ about the same axes. By adding
together the rotations about the same axis, if we name 3,
3¢, and 3¢’ the complete rotations about the three new
axes we shall have
30'—=cos. A" .5y +cos.¢' dw--cos.v'. 30,
36" —=cos.A".03 + cos.u. 3w 4 cos. .3,
3" —cos. A .3V J-cos.u" w4 cos. " 3P,
The rotations 3V, v, and 3p, are by this means reduced to
three rotations 39, 33", and 34" about three other rectan
gular axes, which should consequently give the same rota-
tion 30 that results from the rotations 3J, du, and 3¢, we
shall therefore have
3h2—34'2 s Py 2 ey 391//1234,2 + 32+ 3¢z ;‘
as this equation is identic, by substituting for 3¢'2, 342,
3¢" their values given above, the following conditional
equations will be obtained,
€08.2A 408,24 4 cos. 21 =1,
€08. %/ 4-cos. 2/ H-cos. 2l =1,
€0s. 2 - cos.»v/J-cos. =1 ;
cos. X' i0s. ! 4-c05.27cos.p 4 cos. N cos. ' =0,
€05 o5/ + ¢0s.a".cos.v4-cos A" . cos.y#—=0,
cosipd €08y 4-c0s. /. cos o 4-cos. i . cos.y' '=0.
The three first are the respective co-efficients of 3y, dw,
and 3¢, which must each of them be equal to unity, and the
three last the respective co-eflicients of 23¢'.3Y, 236".3,
and 256#.5¢, and consequently should each of them vanish
that tlie equation may be identic,
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the six conditions of the equilibrium of a systcm of
bodies invariably connected together.

By means of these relations, the values of 3¢, 3w, and 3p
may be obtained, in terms of 3, 347, and 3", by adding
together the values of 30', 39/, and 3", multiplied succes-
sively by cos.x’, cos.a?, cos.A”, cos.'y cos.u’, &c., which
will give

Sy =cos.7".30' 4 cos.A"34" 4 cos.A34",
dw=Cco0s..2/.30' +cos.u".38" +cos. 307,
dp=cos.v".30' + cos.v". 3/ J-cos.,"". 39,
If the angles which the composed rotation 39 makes with the
axes of the three partial rotations 3¢, 36", and 3§'/ are de-
noted by =, #/, and %", we shall have
30'=cos.%".39, 3¢"—cos.%".30, and 3¥"—cos.%'" .39,
and if in the before given values of 30', 307, and 34%, there
are substituted for 8, 3w, and 3p, their values cos.a.39,
cos.».30, and cos.y.39 ; the comparison of these different ex.
pressions of 39, 36", and 36" will give, when divided by 9,
the following new conditional equations, which may be geo.
wmetrically demonstrated. Vide No. 29 Notes.
€05.%'==€05.A.,€05.A 4-C0S. 4. COS. &' +=C€05.y.COS.5,
cos.w"==c0s.2.c08.A" 4 c0s.px.cos. 11" 4~cos.v.cos.y",
cos.7"'—cos.?.cos. A"} cos.m.cos. " +COS.V.COS.y”.
The above proof shews that the compositions and the resolu-
tions of the movements of rotation are analogous te those of
rectilinear motions, For, if upon the three axes of the ro-
tations of 3, 3w, and 3¢, from their point of intersection,
three lines be taken respectively proportional to 3¢, dw,
and 3, and a rectangular parallelepiped be constructed
upon them, it is evident that the diagonal of this parallele.
piped will be the axis of the composed rotation 33, and will
be at the same time proportienal to this rotation,

From this, and from the counsideration that the rotations

about the same axis may be added to or subtracted from each
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If the origin of the co-ordinates is fixed and attaclied

other, according as they are made in the same or in oppo-
site directions, it may be concluded in general, that the
composition and the resolution of the movements of rotation
follow similar laws to those of the composition and the reso-
lution of rectilinear motions, by substituting for the move-
ments of rotation, rectilinear motions along the directions of
the axes of rotation, Vide the Mechanique Analytique of
Lagrange, from which the greater part of the above has heen
extracted.

Let 39, 39/, 36", &c. represgnt any indefinite number of
rotations about their respective axes, these may be com-
posed into one 38, about an instantaneous axis of rotation ;
for if from the point where all the axes cut each other, three
rectangular axes be taken, each of the rotations may be
resolved into three about these axes, and by adding or sub.
tracting, as the rotations are in the same or in contrary
directions, there will be three resulting rotations which
may be composed into one about an instantancous axis of
rotation, ~ Thus if 34/,3%', and 3¢’ represent (he three partial
rotations about three rectangular co-ordinates, info which
the rotation 35 has been resolved, 34/, 34", and 3¢, those
about the same axis into which tlie rotation 3¢/ has been re-
solved, &c. the following cquation may be oltained,
B=V OV - W 3G )t o (3 3674 80" + &el)
(¢! 439430 + &c.)*.

Ifin the formula L.33 +M.3w+ N.59, which coutains the
terms due to the rotations 8y, Sw, and 99 in the geveral for.
mula S.5s 4 8.3 +87.3s"4-&e., the values of 3V, du, and
3¢ found above be substituted, it will be changed,into the
following,

(L.cos.A'++ M cos.i' + N.cos.y)o9'
+ (L.cos." 4 M.cos.p 4 N.cos.y")36"
- (F.cos. A" 4+ M cos.u” + N.cos.y" )38,
The co-efficients of the elementary angles 39', 36", and 36"
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invariably to the system, it will destroy the forces pa-

express the sums of the moments relative to the axes of the

rotations 3%, 33", and 34",  From the above it appears that

moments equal to L, M, and N, relative to three rectan.

gular axes will give the moments
L.cos.\'--M.cos.u'+N.cos.v,
L.cos.N1.cos.u"+ N.cos. v,
L.cos.\"+4M.cos..'"~} N. cos.v",

relative to three other rectangular axes, which respectively

make with these the anglesa’, u/y v 5 &, I, v 5 277 0 50,

A geometrical demonstration of this theorem is given by
Euler in the seventh vol. of the Nova acta of the Academy
of Petersburg.

If the rotations 3y, 3, and 3p are supposed to be proa.
portional to L, M, and N, and we make

H=¢y/( L* 4 M4 N2),
the following equaticns will have place
L=1U.cos.n, M=H.cos.u, N—H.cos.y,
and the three moments will be reduced to this simple form
H.cos.w', H.cos.w, II.cos.x,

But «', %, and o/ are the angles which the axes of the ro.
tations 8%, 39”, and 39" form with the axis of the composed
rotation 89, if therefore we make the axis of rotation 3"
coincide with the axis of rotation 39, then #'—0, and #” and
#/" are each cqual to a right angle, consequently the moment
about this axis will be H, and those about the two other
axes perpendicular to it will be nothing. We may there-
fore conclude that moments respectively equal to L, M,
and N, and relative to three rectangular axes z, ¥, and %

may be composed into one, I, eqaal to 1/(L‘+Il[’+N=)

relaiive to an axis which makes with them the angles Ay ey
“and v, so that

L M N

—I-I—, Cos. y,':‘ﬁy Cos, 7 :II.

The sum of the moments relative to this axis isa maximum =
“

€08, A=
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rallel'to the three axes; and the conditions of the equis

the tangent of the angle that it makes with the planex y is

= and the tangent of the angle which the projec-

N
‘/Lz q
tion of the axis upon that plane miales with' the axis' of #, i¥
equal to —ZLI

L

Tt is evident from the above that the composition of mo-
ments follows the same laws as that of rectilinear motions.
It miay be immeliately deduced from the composition of in-
stantaneous’ rotatiolis, Dy substituting the moments for the
rotations’ whicl' they produce, in’ the samé manner as fordes
can be substituted for right lined motions, Vide the Mex
chanique Analytique of Lagrange.

Those who are desirous of further information respecting
the composition and the resolution of monients, may consult
the writings of Euler, Prony, Poisson, &ec. also a memoir
by Poinsot, in the 13th Cahier of the Journal de I’Ecole
Polytechnique.

If the moments of the forces which act upon a system be
taken directly with respect to a point at the origin of the
co-ordinates, they will follow the same laws with respect to
different planes, as the projections of areas upon them, thus
for instarice, Sy. (3—5)—5‘1’(3—‘&) mdy No. 3 be com-
posed‘ into a single moment with respect to the origin of the
co-ordinates. 'This moment will evidently be the product
of the projection of the force S upon that plane multiplied'
by the perpendlcular drawn from the origin of the co-ordi.
nates to its dlrecuon, and may therefore be represented by
an are4 equal to twice the areaof a triangle, havmg the pro-
jéction of a line representing in quantity and direction the
force S for its base, and the origin of the co-ordinates for
its summit,

It therefore follows, that the properties of moments with
respect {o a fixed pointare similar to those of plane surfaces.
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librium of a system about this origin, will be reduced

f shall mention a few circumstances concerning them, re-
ferring the reader to No. 21, and the notes accompanying
4it, which may be read independent of the other parts of the
work, from which the following preperties may. be deduced.

Suppose a number of areas represented by 4, 4', 4", &c.
are in a plane passing through the origin of the co-ordinates,
let &, &', b, &c. represent these areas projected upon three
rectangular planes passing through the origin of the co-or.
dinates, and ¢, ¢/, and ¢/ represent the projections of the
areas upon three other rectangular planes passing through
the same point, then by No. 21

b2 - b1z + b''2—c2 + Clz+cllz’
consequently
b=y (c* 4 2-cI2—b2—p'"2),
When &' and &” vanish, the value of 5 is evidently a maxi.
mum, and the line which is perpendicular to ‘it at the origin
of the co-ordinates may be found from the following equa-
tions,-in which «, 8, and y represent the respective angles
that it makes with the rectangular co.ordinates %y Y, and
2 of the planes containing the areas ¢, ¢/, and ¢”.
cII >
ci

cos.f=—= W_*F+7r{)',

€05, 2=

c
Cos,y.—= Wﬁ-{?c—"_{)' =
/The absolute position of the plane of the greatest sum. of the
projections of the areas is indeterminate in space, as the
projections are the same upon all the planesthat are parallel
to each other,

The sum of the projections of the areas are the same for
every plane which is equally inclined to that of the greatest
projection, for if Z denote the angle which any plane having
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to the following, that the sum of the moments of the

the sum of the projections npon it represented by a makes

with that of the greatest projection, we shall have
a:1/(c=+c“+c”1).cos.l,

therefore if / be invariable ais also.

If D represent the sum of the areas upon any plane, ¢, ¢/,
and ¢ the angles which a perpendicular to it at the origin of
the co-ordinates makes with the axes z, y, and # respectively,
and 4, B, and C the sums of the projections of the areas
upon the three planes ay, #z, and yz of the co-ordinates,
then the following equation may be easily demonstrated,

D—=A.cos.c+ B.cos.s'4C.cos.¢.

If the areas 4, A', A", &c. are supposed to be respectively
double the triangles which have lines representing in direc.
tion and magnitude, the forces §, S’, 8, &c. for their bases,
aud the origin of the co-ordinates of their points of appli-
cation for their common vertex, then if N denote the mo.
ments of the forces projected upon the plane ay, it will re-
present also the sum of the projections of the areas A, A,
A", &c. upon the same plane, In like manner, if Mand L
represent the moments of the forces projected upon the
plaues xz and gz, they will also represent the projections of
the areas 4, 4', A", &c. upon these planes. Itis therefore
evident that the three quantitiesL, M, and N, and analogous
quantities relative to the same system of forces, and to other
planes, will have the same properties as the sums of the pro-
jections upon those planes,

In the above the origin of the co-ordinates, or the centre
of moments, is supposed to be invariable, and the forces §,
8’ 8%, &c. to be resolved in directions parallel to the re
spectlve planes, and to be moved parallel to themselves to
these planes, and to act along them.

1t therefore follows, that if the sums of the moments of
the forces S, §', S¥, &c. resolved along the three planes of
the co-ordinates be known, the sum of the moments of the
same forces resolved along any other plane passing through
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forces which would make it turn about the three axes,
be nothing relative to each of them *.

the centre of moments will be known from the following
equation

D=—N.cos.e-- M.cos.s -+ L. cos.¢,
in which D represents the sum sought, and'z, ¢/, and ¢/ the
angles which a perpendicular to any plane from the centre of
the co-ordinates respectively makes with the axes of the co.
ordinates 2, y, and x.

The sum of the moments with respect to the plane of the
greatest sum of the moments is represeated by 1/1,1_t_ !;p._’_Nz
and that of any plane making the ange / with it is equal to
¢/Lz_‘_Mz+i\4=.cos.l if the angle / be a right angle then
cos./—0; and the sum of the. moments relative to this plane
vanishes,

If a, B, and  represent the angles which the perpendicular
to the plane of the greatest sum of the moments makes with
the axes of the co-ordinates x, y, and z, its position will be
determined by the following equations

L
oS I
M
‘“°5'B—1/E:me’
N

If lines be taken upon the perpendlculars to each plane
from the centre of moments proportional to the sums of the
moments upon these planes, the line representing the great.-
est sum will be the diagoral of a parallelepiped constructed
upon the lines representing the the three sums L, M and N.

The composition of moments, therefore follows thg same
laws as that of forces, the greatest sum and the perpendi.
cular to its plane haying place instead of the resultant and
its direction.

. *If the forces are all supposed parallel to each other and
their directions to make the angles «, £, and ¢ with the
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Let it be supposed that the bodies m, »/, m’, &c. are
only acted upon by the force of gravxty as its action

co-ordinates x, y and 2 respectively; the equatiops (n) may
be changed into the following
; 0—cos.«.2.mSy—cos.B.2.m8x,
0=c0s.2.%.mS83—Cco0s.7.2.mSx,
0—cos.y.=.mSy—cos.B.2.mSz,
be third .of which is a consequence of the two first; but as
by trigonometry cos.2x-}c0s.23+4 cos.?y=—1, we may deter.
minefrom these equations the angles «, B, and Y. B_y sup-
" posing, for abridgment, Y
=.mSr—=mSx+-m'S's J-m"SVz" +&c.:L
E.mSy—mSy+m'S'y +-mS"y' +&c.—]
o 2.mSz=mSz 4 m!S'Y Jml SV} &c.:N,
the following equations will readily be found,

L M
cos'a“V(L2+ﬂ1‘+N’)’ COS‘B=V(L‘+M‘+N’) y
N
Y= LA I N

The position of the hodies being given with respect to
the three axes, it is necessary in crder that all motion of
rotation may be destroyed, that .the system should be
placed relative to the direction of the forces, in such a
position as to caunse the direction to make with the three
axes the angles determined above.

If the quantities L, 1, and 2V vanish, theangles a, 8, and
# will remain indeterminate, and the system will be in
equlhbrio in any position. Therefore, if the sum of the
_produCts of parallel forces by their distances from three planes
perpendicular to each other be nothing with respect to each
of these planes, the effect of the forces to turn the body
~about the common ‘pomt of intersection of these planes witl
be nothing. :
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is the same upon all the bodiés, and as the dircctions of
gravity may be conéeived to bé the samie in all the ¢x-
{ent of the system, we shall have

S—=S'=—S§"—8&c. ;

8¢ e

s —)‘“ R e
3s

) 5 ,,)___&c. ;

“)“ )= )=se

the three equations () will be satisfied, whatever may
be the direction of s, or of gravity, by means of the
three following

0—==2.mz ; 0==2.my ; 0O=Z.mz. (o)

The origin of the co-ordinates being supposed fixed,
it will destroy parallel to the thrce axes, the forces

S.(s-‘—x)7.2.m; S'.(@)'.E.m; and s(s—;)zm re-

spectively ; by composing these three foréés, we' shall
have a resultant equal to S.3.m'; that isy equal to the
weight of the system.

This origin of the co-ordinates, about which we here
suppose the system to be in equilibrio, is a very re-
markable point in it, on this account, that being sus-
tained, if the system is supposed to be only acted upon
by the force of gravity, it will remain in equilibrio,
whatever situation we may give it about this point 3
which is called the centre of gravity of the system, Iis
positionis determined by the condition, that if we make
any plane whatever pass by this point, the sum of the
products of each body by its distance from the plane is
nothing ; for the distance is a'linéar function of thé co~
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ordinates #; » and g of the body*; if it be therefore
multiplied by the mass of the body, the sum of these
products will be nothing in consequence of the equa-
tions (o).

In order to fix the position of the centre of gravity,
let X, Y, and Z beits three co-ordinates relative to a
given point ; let #, 7 and z be the co-ordinates of m
relative to the same point, 2’ 7/, and =/ those of m’,and
so on; theequations (o) will then give

0=2.m.(xz—X) ;

but we have ‘E.mX:XE.m, 2.m being the entire
mass of the system; we shall have therefore

2.mx
X— — St
‘We shall have in like manner
. Zumy S.mz
N i e

but as the co-ordinates X, Y, and Z determine only one
point, it is evident that the centre of gravity of a body
is only one point.

The three preceeding equations give

2 2 (2-7”~1')2+(2-my)2+(2.7715)=
X e S J.

* Let Az’ 4By’ + CZ =0 be the equation to a plane pass-
ing through the centre of gravity, which is supposed to be
the oxigin of the co-ordinates ; then if 2, y, and z are the
co-ordinates of the body, its distance from that plane will

- dx+ B./+C~
¢ (A B C)
ord;nates 2, 4 and z of the body.

, which is a linear fuaction of the co-
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which équation mry bs altered to this form*

- * TP LY

PLAy il (2" -y 5%

+y 2o
St { (2= Py —y) (3= ~)’F
(Z.m)*

the finite integral Z.mond’.{ (t’ — )y — )" —
)%} cxpresses the sim of all the prodacts, similar to
that which is contained undér the characteristic Z,

# [n order t> render this evident it will be sufficient to
give an example, in which ouly three bodies m,m’,and m”are
considered with respect to the co-ordinatesof x. 1o this case

Z.m(%?) R i b mrtf-m 22 f-mTxl%
E.m +m' Fm”
b mm’{(x x)z}
(= m)’-
mm' & —mm'w s’ mm' v f-mmd" 5 — Qmm s f-mm et
(z.m)*

m’ﬂ‘t”m”‘—ﬁ'm’m”x”ﬂ_f_m’mflxllz >
, if both the numerator and

denominator of the first quantity are multiplied by Z.m or
m+m/4m7, it will become

P2t mm'E' ?  mm 2 g a7t m? 22’ I m e o mm?

(z.m)*

B2 m!my'% 4 m P2l
»

which, by subtracting the last quantity, gives

At 2mm' vx w22/ 4-2m'm o 2 +2mm" z:”-l—-m"x"*
(Z.m)?

(Z.mz)?
Em)?’
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which we are able to form, from considering by two
and two all the bodies of the system. We shall thus
have the distance of the centre of gravity from any fixed
point whatever, by means of the distances of the bodies
of the system from the same fixed point, and their mu-
tual distances. By determining in this manner, the
distances of the centre of gravity from any three fixed
points whatever, we shall have its position in space,
which is a new method of determining it*.

‘We have extended the denomination of centre of
gravity to a point of any systemt whatever of bodies,
either having or not having weight, determined by the
three co-ordinates, X, ¥, and Z+.

% As the last term of the second member of the equation
is independent of the given point, if the values of. the first
term be determined with respect to three given points not
in the same straight line taken cither within or without the
system, we shall have the distances of its centre of gravity
from these points, and consequently its position with re-
spect to them, ' If the bodies were in the same plane two
points would have been sufficient, and if in the same line,
one. If the given points be taken in the bodies of the sys.
tem, the position of its centre of gravity will be given solely
by the masses and their respective distances. This method
of finding the centre of gravity is independent of the consi-
deration of three planes.

+ It is evident from the principle of virtual velocities,
that the’ centre of gravity of a system of bodies connected
together in anysmanner, is generally the highest or the low-
est possible when the system is in_equilibrio.

Let m. m', m", &c. be the centres of gravity of a number
of bodies connected together, whose weights are denoted by
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16. 1t is casy to apply the preceding results to the

-

the powers S, 8", 8", &c. acting respectively upon these cen.
tres, and let s, s/, s”,&c. represent lines respectively drawn
from them to any horizontal plane. If the position of the
system be disturbed in an indefinitely small degree, we shall
have, in the case of equilibrium, the equation of virtual
velocities S35 +87.05' 48185/ +-&c.—0 3
the quantity Ss4S’s' -+ 8%s"4-&ec. is therefore either a max-
imum or a minimum. If the sum of the weights §, §', 8",
&c. be represented by &, and the distance of the centre of
gravity of the system from the horizontal plane by g, we
shall have the following equation

S.s4-8.¢'4-8"s" L &e.—=G.g.
As the first member of this equation is either a maximum or
a minimum, the second is also, consequenily the distance
of the centre of gravity from the horizontal plane is either a
maximum or a minimum when the system is in a state of
equilibrinm.
. When the distance of the cenire of gravity from an hori-
zoutal plane is a maximum, the equilibrium of the system of
heavy bodies is uustable, and if moved in an indefinitely
small degree would not return to its former state; on the
coutrary, wheu the distance of the centre of gravity is a
minimum, the system if moved from the state of equilibrium,
would, after oscillating some time, return to it.

This may be exemplified iu the case of a cylinder with an
elliptical base, which, when placed upon an horizontal plane
with the edge of contact in the line passing along an extre.
mity of the major axis, will have the distance of its centre
of gravity from the plane a maximum and its position uhsta-
ble, and the contrary when placed with the edge of contact
in a line passing through an extremity of the minor axis,
The above are the only positions in which there can be an

equilibrium,
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equilibrium of a solid bedy having any figure what-
ever, by supposing it formed of an indefinite number of
points invariably connected with cach other. Let dm
represent one of these points, or an indefinitely small
molecule of the body, and let z, y, and = be the rectan-
gular co-ordinates of this molecule ; again, let P2, Q,
and R be the forces by which it is actuated parallel to
the axes of x, ¥, and z ; the equations (m) and (2) of
the preceding No. will be changed into the following 3
0—=/P.dm ; 0—=[Q.dm; C—=fR.dm ;
O=f(Py—Qx)dm ; O=[f(Pz—Rx)dm ;
—(Ry—Qz)dm ;
the integral sign [ is relative to the molecule din, and
ought to be extended to the whole mass of the solid*.
If the body could only turn about the origin of the
co-ordinates, the three last equations would be suffici-
ent for its equilibrium.

* Jtis easy to perceive that in the case of a solid body,
which may be supposed to be composed of an indefinitely
great number of points invariably connected together,

L ds I\,
the quantntyE.mS(ﬁ) becomes fP.dm ; for S(E) is
equivalent to P, and f dm to Z.m ; in like manner Z.mS

E)——m(s—s)} becomes: f(Py—Qx)dm, for 2.S.
da sy) s

3s : " 3s
(sTr)y m is equivalent to fPy.dm, and E'S(ﬁ)‘x m ta
JQx.dm. : ‘
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 CHAP. IV.

ll

Of the equilibrium of fluids.

17. "Fo have the laws of the cquilibrium and of the
motion of each of the fluid molecules, it is necessary to
know their figure, which is impossible ; but we have
no occasion to determine these laws except for the fluids
considered in a mass, and then the knowledge of the
forms of their molecules becomes useless. 'Whatever
may be these figures and the dispositions which result
in the integral molecules; all the fluids taken in the
mass ought to offer the same phenomena in their equi-
librium, and in their motions, so that the observation of
thesc phenomena does not enable us to learn any thing
respesting the configuration of the fluid molecules.
These general phenomena are founded upou the per-
fect mobility of the molecules, which are thus able to
give way to the slightest effort. This mobility »is the
characteristic property of fluids : it distinguishes them
from solid bodies, and serves to define them. From
hence it results, that for the equilibrium -of a fluid
mass, each molecule ought to be in equilibrio, ‘in con®
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sequence of the forces which solicit it, and the pressure
which it sustains from the surrounding molecules. ILet
us develope the equations which result from this pro-
perty.

In order to accomplish it, we will consider a system
of fluid molecules forming an indefinitely small rectan-
gular parallelepiped. Let x, y, and ¢ be the three
rectanglar co-ordinates of the angle of this parallele-
piped the nearestto the origin of the co.ordinates. Let
dz, dy, and dz be the three dimensions of this parallel-
epiped ; let p represent the mean of all the pressures
which the different points of the side dy, dz of the par-
allelepiped that is nearest the origin of the co-ordinates
experiences, and p’ the same quantity relative to the
opposite side. The parallelepiped, in consequence of
the pressure which actsupon it, will be solicited parallel
to the axis of x by a force equal to (p—p).dy.dz; p'—p
is the differential of p taken by making « alone to vary;
for although the pressure of p’ acts in a different direc-
tion to that of p, nevertheless the pressure which a point
of the fluid experiences being the same in all directions;
p'—p may be considered as the difference of two forces
indefinitely near and acting in the same direction ; we

shall therefore have p’—p:(%).dx; and (p—p’)

dy. de== — (Z—Z).dx.dy.dz*.

* In (fig. 14) let AX, AY, and AZ represent the
axes of 2, y, and = respectively, and ¢k a molecule of the
#uid iu the form of a rectangular parallelepiped, whose fa-
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Let P, @, and R be three accelerating forces which
also act upon the fluid molecule, parallel to the respec-
tive axes of z, , and 2 : if the density of the parallel-
epiped is named p, its mass will be p.dr.dy.dz, and the
product of the force P by this mass, will be the en-
tire resulting force which moves it ; this mass will con.
sequently be solicited parallel to the axis of #, by the

force g p P— (Z—Z) g Jdr.dy.dz. It will in like man-
ner be solicited parallel to the axes of y and z, by the

forces %pQ —- (Z—Z) g .dr.dy.dz,and % pR——-(Z—[:) g

.dr.dy.dz ; we shall therefore have, in consequence
of the equation (b) of No. 3,
d, d
O:gpP—- ( p %.3x—|—-gpQ—- (ﬁ g S+

dzv

$ra— ()}

ces bh, ag, and ad are respectively parallel to the planes
YAX, ZAX, and YAZ. Suppose that the co-ordinates of
the angular point & of the molecule are #, y, and z, and
that bg—dx, bd—dy, and ba—dx ; also, let mo represent
the quantity and direction of the mean of all the forces act.
ing upon the face dy, dz of the parallelogram, or the force
P, and nq the mean of all the forces acting upon the oppo-
site face fg of the molecule, or the force p'. .

In this case p is supposed to be a function of the co-ordi-
nates x, y, and 2, consequently for the opposite side of the
parallelepiped to that formed by dy and dz, as x becomes

1,
%-dx, the pressure p is changed into p+(-(d—g).dm which
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or dp==p{ P34 Q .3y R.3: 3.

The second member of this equation ought to be &n
exact variation like the first; which gives the following
equations of parlial differentials,

D)4 (SO
(2 (n):

from which we may obtain

o= ()= 0(E)+ 2 (35)-2 (5 )+

for that side must necessarily act in'an oppbsite dircttion te
p. It therefore follows that (g—‘g)dx, the differerice of

the two pressures, when multiplied by dy and dz, gives the
whole force arising from pressure that acts upon the paral.
lelepiped in the direction of the co-ordivates, which should
be taken negatively, as it tends to diminish them, and, in
the case of equilibrium, must be equal to the moving force
¢ P.dz.dy.dz.that acts in an opposite direction.

* The equation

0= g,;P‘— (g) ; St %,Q— (%’)Z Sy 4 %pRu-
()

by transposition, becomes

(L)es (LYt (G )P ataasriy,

but( )8x—|-( Sy -+ (d—p)Bz is equivdlent to (:—p)
h‘_[_(sl’)s +(87’)3~ or 3p, page 45, thercfore Sp=—p
(P.324Q.3yFR39).
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("R)— R(5)r

+ The proof that if p§ P.dz4Q5y4R.0x} is an exact

differential, the equations

CF)=() Co)=CF)
@ o

have place, may be given as follows. Suppose u—f(x,yJ,

then du—pdz-+qdy is an exact differential, ifp:(z——z)

and q:(%) ; by diflerentiatiog y alone in the first, and
Y

x alone in the second of the two ]ast equations we shall have

(&)=Ga) vila =)
dy )7\ dxdy dydx

d*u )_ d*u ) there, )
but (dxdy —(dydr 2 i ore( ((lx

In like manner, if w=f(z,y,2), by differentiation du—
pdr-gdy-+t-rdz, in which equation p:( ) (du)

duy .
and r:(TZ) 3 let z be supposed constant, then du—pdr

el . dq ;
+qd_y,wh1chglves(:l§)—_—(d—r) ; also if y and w are sup.

posed alternately constant, the resulting equations will re.

0
spectively give ) (( r) ( ) (d’) Iu the

above p I’ may be substltuted for p, pQ for ¢, aud ;R for r.

By differentiating the equations( ) ((l;Q
o

(d PP) (’l PR) (d PQ) ( ) and afterwards

multiplying the first by R, the second by — @, and the third
by P ; they will give by adding together, asp disappears, the

]
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'This equation expresses the relation which should
exist amongst the forces P, @ and R, that the equili-
brium may be possible*.

: 3 L dQ) dp , (4P
following equation O__P.(— _Q'(?L.:) +IL.(@
p(E)+e (5 )2 (%
dy

* Suppose an incompressible fluid not acted upon by the
force of gravity to be contained iu a vessel that has a number
of cylinders attached to the sides ofit, to which a number of
moveable pistons are adapted. Let the areas or bases of
the cylinders or pistons be represented by 4, 4/, A", &c.

also suppose S, 8’, S”, &c. to denote the powers apphed
to the pistons haviug the bases 4, A', 4", &c. respectively,
and that these powers, which act upon each other by the
intervention of the fluid, are in equilibrio. Let p repre-
sent, in this case, the pressure upon the area denoted by
unity of the surface of the vessel or the base of the pistons,
then pA, pA', pA", &c. will denote the respective pressures
of the fluid upon the bases of the pistons, but these pressures
are equal to the forces which act upon the pistons, therefore
S—pd, S=pd', S=pA", &c. Let a part of the pistons
be pushed downwards, then it is evident that the other part
of the pistons must be elevated by an equal quantity of water
to that depressed, so that if ds, 35, 3s”, &c. represent the
depressions or the elevations of the respective pistons whose
bases are o, A', A1, &c. we shall have the equation

Ads 4 A58 4 A".35" + &c.=0,
regarding the spaces through which the pistons were depressed
as posmve, and the spaces through which they were elovated
as neaatlve. Let this equation be multiplied by p, then

pAd.Ss4p. A3 +p A" 35" +&e.=0,

or by substitution

S.3s4 805" 4+ 57,957 + &c.=0 ;
which is the equation of virtual velocities.
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if the fluid be free at its surface, or in certain parts

Suppose that T, T, TV, &c. represent the different pow.
ers which act upon a molecule whose co-ordinates are «, y,
and = ; these powers being directed to certain fixed centres,
the distance oi which/from the molecule solicited are re-
spectively ¢, ¢/, ¢", &ec.

Let the co-ordinates of these fixed centres referred to the
origin of the co-ordinates x, y, and =, and respectively
parallel to them be ¢, b, ¢; &, ¥, ¢!, &c. weshall then have

:—Tl(a:-a) + T’—(x—a’) -+ 2'(:ﬂ—-a”) + &ec.
T T

= (=) + (=)t L cy—n) e,
R:—t—(z—c) +—z,-(z-—c’)+7(:‘—c”)+&c.

t=y/{ (e—a)*+(y—b)*4(3—c)*},

U=y { (o oo (g Y b ()
&e. &e.

As the equilibrinm is possible, when the fluid molecules are
solicited by forces directed towards fixed centres, whichare
functions of the distances of the points of application from

these centres ; we may substitute the above values of P, Q,
and R, in the equatlon

7=(P- Sz+Q.3y+R-3z), :

which then becomes

T .
L2 (r—a)n - (y—)3y + (2—)35}
—-{ (v—a')dx4-(y—b')dy+(2—¢' )32}

3= {(w—a”)m(y——b")s./+(z—d')3z}
+&c.

and is equivalent to

8—l‘:::T.)t+ T3 TV, 310 +-&e.
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of its surface, the value of p will be nothing in those
parts ; we shall therefore have 8p—0%*, provided that
we subject the variations 3x, 3y, and, 3z to appertain

The sum = (3p) taken throughout the whole extent of any
indefinitely narrow canal, which either re-enters into
itself, or is terminated at two points of the exterior surface
of the fluid mass, is always nothing ; on the supposition that
the resistance of the sides, ifthe fluid be contained in a vessel
is regarded, and that the canal is imagined in this case to
have one of its extremities terminated at a point of its side.
It may therefore be concluded, that for all the cases of the
equilibrium of a fluid, the following equation has place
throughout the whole extent of the mass,

S{p( T3+ 1730 +1".90"+-&c. ) }=o0.
In this equation the products of 7', 7", &c. are propor.
tional to the moving forces with which each power acts upon
the molecule. Eet'S§, §'. 8", &c. represent the moving
forces which are the resultants of the powers which re.
spectively act upon each fluid molecule, and s, s', s/, &c.
the lines drawn respectively in the directions of the forces
S, 8, 87, &c. from each fluid molecule; then the above
equation is eguivalent to the following

S.95 4 87.3s' 487357 4 &c.—O0.

This equation is similar to those deduced from the principal
of virtual velocities for the equilibrium of a peint or a
systeni.

o Ihls will be tho case not only when p—0, but likewise
when' p is a constant quantity, which also givesSp—0. For
instance when the atmosphere presses equally apop the sur-
face of the fluid.
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to this surface: by fulfilling these conditions we shall
cousequently have

0=P.32} Q:3y+ R.33*.

* Suppose for example, a fluid mass to be acted upon by
a force § tending to the centre of the co-ordinates, and let
one of its molecules be placed at the distance » from that
centre, having x, y, and 2, for its rectangular co-ordinates,
then 7=/ 32} 324 32 ; the force S resolved parallel to these
co.ordinates gives SE,-'S‘—y’and o for the forces in their re-

el 2 r

spective directions. These forces, taken negatively as they
tend to diminish the co-ordinates, should be substitated for
their respective values P, @, and R, in the preceding
equations. When they are substituted in the equation 0=
P.3x4-Q.3y4-R.3+ they will give, by the suppression of the

S
common factor -7

O=—x.dx+y.5y. +2.32,

which is an exact differential, therefore the equilibrium is
possible,  This equation when integrated becomes x4y 4
z%==c?, whichis the equation to a sphere, consequently, the
fluid wiil assume a spherical form. If r is very great the
surface of the fluid may be regarded as a plane, as is the
case with the surface of a fluid in equilibrio in a vessel when
only acted upon by the force of gravity.

Let the force § be supposed to vary as the ath power of
its distance from the centre of the co-ordinates, and to be
represented by Aro, also, let p represent the pressure upon
an area of the surface denoted by unity, then the equation
p=¢f{P.3x+4Q.3y+ R.3z} will, by a proper substitution,
be chinged into the following

p=Ade frr—"(xdr4-ydy+232),
but x3x+gb‘_y+z§z:r3r, therefore
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1f 3u=0 be the differential equation of the surface, we
shall have P.32+4Q.3y-+R.82=x.%u, A being a func- -
tion of , y/, and z; from which it follows, by No. 3, that

— A ng_’AE- 2 2 L o2 i
PAir "= @ity A )’_-{——const.
This is the value of the pressure referred to unity of the sur-
face which acts upon the molecule that has , y, aud = for its
co-ordinates,

The equation of equilibrium may be used to find the form
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